Description of fast matrix multiplication algorithm: ⟨15×18×27:4200⟩

Algorithm type

16X9Y3Z4+480X6Y6Z4+16X3Y9Z4+168X9Y3Z2+720X6Y6Z2+152X3Y9Z2+32X3Y3Z8+216X9Y3Z+64X6Y3Z4+192X3Y9Z+48X3Y6Z4+48X3Y3Z6+208X6Y3Z2+136X3Y6Z2+168X6Y3Z+96X3Y6Z+384X3Y3Z4+72X3Y3Z3+696X3Y3Z2+288X3Y3Z16X9Y3Z4480X6Y6Z416X3Y9Z4168X9Y3Z2720X6Y6Z2152X3Y9Z232X3Y3Z8216X9Y3Z64X6Y3Z4192X3Y9Z48X3Y6Z448X3Y3Z6208X6Y3Z2136X3Y6Z2168X6Y3Z96X3Y6Z384X3Y3Z472X3Y3Z3696X3Y3Z2288X3Y3Z16*X^9*Y^3*Z^4+480*X^6*Y^6*Z^4+16*X^3*Y^9*Z^4+168*X^9*Y^3*Z^2+720*X^6*Y^6*Z^2+152*X^3*Y^9*Z^2+32*X^3*Y^3*Z^8+216*X^9*Y^3*Z+64*X^6*Y^3*Z^4+192*X^3*Y^9*Z+48*X^3*Y^6*Z^4+48*X^3*Y^3*Z^6+208*X^6*Y^3*Z^2+136*X^3*Y^6*Z^2+168*X^6*Y^3*Z+96*X^3*Y^6*Z+384*X^3*Y^3*Z^4+72*X^3*Y^3*Z^3+696*X^3*Y^3*Z^2+288*X^3*Y^3*Z

Algorithm definition

The algorithm ⟨15×18×27:4200⟩ is the (Kronecker) tensor product of ⟨5×3×9:105⟩ with ⟨3×6×3:40⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table