Description of fast matrix multiplication algorithm: ⟨15×18×24:3600⟩

Algorithm type

480X4Y6Z6+752X2Y6Z6+16X2Y3Z9+16X4Y6Z3+32X4Y3Z6+48XY6Z6+24XY3Z9+16X6Y3Z3+248X2Y6Z3+160X2Y3Z6+256X4Y3Z3+336XY6Z3+168XY3Z6+24X3Y3Z3+640X2Y3Z3+384XY3Z3480X4Y6Z6752X2Y6Z616X2Y3Z916X4Y6Z332X4Y3Z648XY6Z624XY3Z916X6Y3Z3248X2Y6Z3160X2Y3Z6256X4Y3Z3336XY6Z3168XY3Z624X3Y3Z3640X2Y3Z3384XY3Z3480*X^4*Y^6*Z^6+752*X^2*Y^6*Z^6+16*X^2*Y^3*Z^9+16*X^4*Y^6*Z^3+32*X^4*Y^3*Z^6+48*X*Y^6*Z^6+24*X*Y^3*Z^9+16*X^6*Y^3*Z^3+248*X^2*Y^6*Z^3+160*X^2*Y^3*Z^6+256*X^4*Y^3*Z^3+336*X*Y^6*Z^3+168*X*Y^3*Z^6+24*X^3*Y^3*Z^3+640*X^2*Y^3*Z^3+384*X*Y^3*Z^3

Algorithm definition

The algorithm ⟨15×18×24:3600⟩ is the (Kronecker) tensor product of ⟨3×3×6:40⟩ with ⟨5×6×4:90⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table