Description of fast matrix multiplication algorithm: ⟨15×18×20:3132⟩

Algorithm type

18X6Y2Z4+306X4Y4Z4+18X2Y6Z4+36X2Y2Z8+90X6Y2Z2+36X4Y2Z4+90X2Y6Z2+36X2Y4Z4+18X2Y2Z6+18X6YZ2+18XY6Z2+90X6YZ+324X4Y2Z2+324X2Y4Z2+234X2Y2Z4+90XY6Z+36X4YZ2+18X3Y2Z2+18X2Y3Z2+36X2YZ4+36XY4Z2+36XY2Z4+18X4YZ+90X3Y2Z+90X2Y3Z+198X2Y2Z2+18X2YZ3+18XY4Z+18XY2Z3+36X2Y2Z+234X2YZ2+234XY2Z2+126X2YZ+126XY2Z18X6Y2Z4306X4Y4Z418X2Y6Z436X2Y2Z890X6Y2Z236X4Y2Z490X2Y6Z236X2Y4Z418X2Y2Z618X6YZ218XY6Z290X6YZ324X4Y2Z2324X2Y4Z2234X2Y2Z490XY6Z36X4YZ218X3Y2Z218X2Y3Z236X2YZ436XY4Z236XY2Z418X4YZ90X3Y2Z90X2Y3Z198X2Y2Z218X2YZ318XY4Z18XY2Z336X2Y2Z234X2YZ2234XY2Z2126X2YZ126XY2Z18*X^6*Y^2*Z^4+306*X^4*Y^4*Z^4+18*X^2*Y^6*Z^4+36*X^2*Y^2*Z^8+90*X^6*Y^2*Z^2+36*X^4*Y^2*Z^4+90*X^2*Y^6*Z^2+36*X^2*Y^4*Z^4+18*X^2*Y^2*Z^6+18*X^6*Y*Z^2+18*X*Y^6*Z^2+90*X^6*Y*Z+324*X^4*Y^2*Z^2+324*X^2*Y^4*Z^2+234*X^2*Y^2*Z^4+90*X*Y^6*Z+36*X^4*Y*Z^2+18*X^3*Y^2*Z^2+18*X^2*Y^3*Z^2+36*X^2*Y*Z^4+36*X*Y^4*Z^2+36*X*Y^2*Z^4+18*X^4*Y*Z+90*X^3*Y^2*Z+90*X^2*Y^3*Z+198*X^2*Y^2*Z^2+18*X^2*Y*Z^3+18*X*Y^4*Z+18*X*Y^2*Z^3+36*X^2*Y^2*Z+234*X^2*Y*Z^2+234*X*Y^2*Z^2+126*X^2*Y*Z+126*X*Y^2*Z

Algorithm definition

The algorithm ⟨15×18×20:3132⟩ is the (Kronecker) tensor product of ⟨3×6×4:54⟩ with ⟨5×3×5:58⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table