Description of fast matrix multiplication algorithm: ⟨15×17×17:2630⟩

Algorithm type

6X8Y8Z8+2X8Y7Z7+3X7Y8Z7+X12Y4Z4+X8Y4Z8+4X7Y6Z7+2X6Y7Z7+X4Y12Z4+X4Y4Z12+X11Y4Z4+4X6Y6Z7+3X4Y4Z11+2X10Y4Z4+X7Y4Z7+2X4Y10Z4+2X11Y3Z3+2X7Y3Z7+2X3Y3Z11+X8Y4Z4+16X6Y4Z6+2X6Y3Z7+10X4Y8Z4+3X4Y4Z8+6X7Y4Z4+14X4Y7Z4+2X4Y4Z7+4X2Y11Z2+X7Y4Z3+2X6Y4Z4+24X6Y2Z6+2X4Y7Z3+2X4Y4Z6+4X3Y7Z4+3X3Y4Z7+2X2Y10Z2+2X7Y3Z3+2X5Y4Z4+2X4Y4Z5+4X3Y7Z3+4X3Y3Z7+4X6Y4Z2+2X6Y3Z3+X6Y2Z4+2X5Y4Z3+89X4Y4Z4+X4Y2Z6+8X3Y6Z3+X3Y5Z4+2X3Y4Z5+5X2Y4Z6+3X7Y2Z2+2X6Y3Z2+4X5Y4Z2+8X4Y4Z3+19X4Y3Z4+5X3Y4Z4+3X2Y4Z5+2X2Y3Z6+2X2Y2Z7+X6Y3Z+16X6Y2Z2+2X5Y4Z+X5Y3Z2+X5Y2Z3+15X4Y4Z2+2X4Y3Z3+15X4Y2Z4+9X3Y4Z3+9X3Y3Z4+X3Y2Z5+14X2Y6Z2+16X2Y4Z4+X2Y3Z5+16X2Y2Z6+X2YZ7+2XY4Z5+XY3Z6+XY2Z7+X7YZ+2X6YZ2+2X5Y3Z+6X5Y2Z2+X4Y4Z+2X4Y3Z2+X4Y2Z3+2X4YZ4+7X3Y4Z2+8X3Y3Z3+4X2Y5Z2+5X2Y4Z3+5X2Y3Z4+6X2Y2Z5+2X2YZ6+2XY4Z4+2XY3Z5+2X5Y2Z+31X4Y2Z2+7X3Y3Z2+20X3Y2Z3+X3YZ4+3X2Y5Z+61X2Y4Z2+2X2Y3Z3+31X2Y2Z4+6XY6Z+2XY5Z2+XY4Z3+XY3Z4+2XY2Z5+3X4Y2Z+2X4YZ2+5X3Y3Z+24X3Y2Z2+27X3YZ3+6X2Y4Z+X2Y3Z2+23X2Y2Z3+3X2YZ4+4XY4Z2+4XY3Z3+3XY2Z4+19X3Y2Z+5X3YZ2+X2Y3Z+592X2Y2Z2+5X2YZ3+4XY4Z+2XY3Z2+20XY2Z3+XYZ4+63X3YZ+54X2Y2Z+31X2YZ2+32XY3Z+51XY2Z2+62XYZ3+75X2YZ+117XY2Z+74XYZ2+650XYZ6X8Y8Z82X8Y7Z73X7Y8Z7X12Y4Z4X8Y4Z84X7Y6Z72X6Y7Z7X4Y12Z4X4Y4Z12X11Y4Z44X6Y6Z73X4Y4Z112X10Y4Z4X7Y4Z72X4Y10Z42X11Y3Z32X7Y3Z72X3Y3Z11X8Y4Z416X6Y4Z62X6Y3Z710X4Y8Z43X4Y4Z86X7Y4Z414X4Y7Z42X4Y4Z74X2Y11Z2X7Y4Z32X6Y4Z424X6Y2Z62X4Y7Z32X4Y4Z64X3Y7Z43X3Y4Z72X2Y10Z22X7Y3Z32X5Y4Z42X4Y4Z54X3Y7Z34X3Y3Z74X6Y4Z22X6Y3Z3X6Y2Z42X5Y4Z389X4Y4Z4X4Y2Z68X3Y6Z3X3Y5Z42X3Y4Z55X2Y4Z63X7Y2Z22X6Y3Z24X5Y4Z28X4Y4Z319X4Y3Z45X3Y4Z43X2Y4Z52X2Y3Z62X2Y2Z7X6Y3Z16X6Y2Z22X5Y4ZX5Y3Z2X5Y2Z315X4Y4Z22X4Y3Z315X4Y2Z49X3Y4Z39X3Y3Z4X3Y2Z514X2Y6Z216X2Y4Z4X2Y3Z516X2Y2Z6X2YZ72XY4Z5XY3Z6XY2Z7X7YZ2X6YZ22X5Y3Z6X5Y2Z2X4Y4Z2X4Y3Z2X4Y2Z32X4YZ47X3Y4Z28X3Y3Z34X2Y5Z25X2Y4Z35X2Y3Z46X2Y2Z52X2YZ62XY4Z42XY3Z52X5Y2Z31X4Y2Z27X3Y3Z220X3Y2Z3X3YZ43X2Y5Z61X2Y4Z22X2Y3Z331X2Y2Z46XY6Z2XY5Z2XY4Z3XY3Z42XY2Z53X4Y2Z2X4YZ25X3Y3Z24X3Y2Z227X3YZ36X2Y4ZX2Y3Z223X2Y2Z33X2YZ44XY4Z24XY3Z33XY2Z419X3Y2Z5X3YZ2X2Y3Z592X2Y2Z25X2YZ34XY4Z2XY3Z220XY2Z3XYZ463X3YZ54X2Y2Z31X2YZ232XY3Z51XY2Z262XYZ375X2YZ117XY2Z74XYZ2650XYZ6*X^8*Y^8*Z^8+2*X^8*Y^7*Z^7+3*X^7*Y^8*Z^7+X^12*Y^4*Z^4+X^8*Y^4*Z^8+4*X^7*Y^6*Z^7+2*X^6*Y^7*Z^7+X^4*Y^12*Z^4+X^4*Y^4*Z^12+X^11*Y^4*Z^4+4*X^6*Y^6*Z^7+3*X^4*Y^4*Z^11+2*X^10*Y^4*Z^4+X^7*Y^4*Z^7+2*X^4*Y^10*Z^4+2*X^11*Y^3*Z^3+2*X^7*Y^3*Z^7+2*X^3*Y^3*Z^11+X^8*Y^4*Z^4+16*X^6*Y^4*Z^6+2*X^6*Y^3*Z^7+10*X^4*Y^8*Z^4+3*X^4*Y^4*Z^8+6*X^7*Y^4*Z^4+14*X^4*Y^7*Z^4+2*X^4*Y^4*Z^7+4*X^2*Y^11*Z^2+X^7*Y^4*Z^3+2*X^6*Y^4*Z^4+24*X^6*Y^2*Z^6+2*X^4*Y^7*Z^3+2*X^4*Y^4*Z^6+4*X^3*Y^7*Z^4+3*X^3*Y^4*Z^7+2*X^2*Y^10*Z^2+2*X^7*Y^3*Z^3+2*X^5*Y^4*Z^4+2*X^4*Y^4*Z^5+4*X^3*Y^7*Z^3+4*X^3*Y^3*Z^7+4*X^6*Y^4*Z^2+2*X^6*Y^3*Z^3+X^6*Y^2*Z^4+2*X^5*Y^4*Z^3+89*X^4*Y^4*Z^4+X^4*Y^2*Z^6+8*X^3*Y^6*Z^3+X^3*Y^5*Z^4+2*X^3*Y^4*Z^5+5*X^2*Y^4*Z^6+3*X^7*Y^2*Z^2+2*X^6*Y^3*Z^2+4*X^5*Y^4*Z^2+8*X^4*Y^4*Z^3+19*X^4*Y^3*Z^4+5*X^3*Y^4*Z^4+3*X^2*Y^4*Z^5+2*X^2*Y^3*Z^6+2*X^2*Y^2*Z^7+X^6*Y^3*Z+16*X^6*Y^2*Z^2+2*X^5*Y^4*Z+X^5*Y^3*Z^2+X^5*Y^2*Z^3+15*X^4*Y^4*Z^2+2*X^4*Y^3*Z^3+15*X^4*Y^2*Z^4+9*X^3*Y^4*Z^3+9*X^3*Y^3*Z^4+X^3*Y^2*Z^5+14*X^2*Y^6*Z^2+16*X^2*Y^4*Z^4+X^2*Y^3*Z^5+16*X^2*Y^2*Z^6+X^2*Y*Z^7+2*X*Y^4*Z^5+X*Y^3*Z^6+X*Y^2*Z^7+X^7*Y*Z+2*X^6*Y*Z^2+2*X^5*Y^3*Z+6*X^5*Y^2*Z^2+X^4*Y^4*Z+2*X^4*Y^3*Z^2+X^4*Y^2*Z^3+2*X^4*Y*Z^4+7*X^3*Y^4*Z^2+8*X^3*Y^3*Z^3+4*X^2*Y^5*Z^2+5*X^2*Y^4*Z^3+5*X^2*Y^3*Z^4+6*X^2*Y^2*Z^5+2*X^2*Y*Z^6+2*X*Y^4*Z^4+2*X*Y^3*Z^5+2*X^5*Y^2*Z+31*X^4*Y^2*Z^2+7*X^3*Y^3*Z^2+20*X^3*Y^2*Z^3+X^3*Y*Z^4+3*X^2*Y^5*Z+61*X^2*Y^4*Z^2+2*X^2*Y^3*Z^3+31*X^2*Y^2*Z^4+6*X*Y^6*Z+2*X*Y^5*Z^2+X*Y^4*Z^3+X*Y^3*Z^4+2*X*Y^2*Z^5+3*X^4*Y^2*Z+2*X^4*Y*Z^2+5*X^3*Y^3*Z+24*X^3*Y^2*Z^2+27*X^3*Y*Z^3+6*X^2*Y^4*Z+X^2*Y^3*Z^2+23*X^2*Y^2*Z^3+3*X^2*Y*Z^4+4*X*Y^4*Z^2+4*X*Y^3*Z^3+3*X*Y^2*Z^4+19*X^3*Y^2*Z+5*X^3*Y*Z^2+X^2*Y^3*Z+592*X^2*Y^2*Z^2+5*X^2*Y*Z^3+4*X*Y^4*Z+2*X*Y^3*Z^2+20*X*Y^2*Z^3+X*Y*Z^4+63*X^3*Y*Z+54*X^2*Y^2*Z+31*X^2*Y*Z^2+32*X*Y^3*Z+51*X*Y^2*Z^2+62*X*Y*Z^3+75*X^2*Y*Z+117*X*Y^2*Z+74*X*Y*Z^2+650*X*Y*Z

Algorithm definition

The algorithm ⟨15×17×17:2630⟩ could be constructed using the following decomposition:

⟨15×17×17:2630⟩ = ⟨8×8×8:336⟩ + ⟨8×8×8:336⟩ + ⟨7×9×9:398⟩ + ⟨8×9×9:430⟩ + ⟨7×9×8:350⟩ + ⟨7×8×9:350⟩ + ⟨8×9×9:430⟩.

This decomposition is defined by the following equality:

TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_1_8A_1_9A_1_10A_1_11A_1_12A_1_13A_1_14A_1_15A_1_16A_1_17A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_2_8A_2_9A_2_10A_2_11A_2_12A_2_13A_2_14A_2_15A_2_16A_2_17A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_3_8A_3_9A_3_10A_3_11A_3_12A_3_13A_3_14A_3_15A_3_16A_3_17A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_4_8A_4_9A_4_10A_4_11A_4_12A_4_13A_4_14A_4_15A_4_16A_4_17A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6A_5_7A_5_8A_5_9A_5_10A_5_11A_5_12A_5_13A_5_14A_5_15A_5_16A_5_17A_6_1A_6_2A_6_3A_6_4A_6_5A_6_6A_6_7A_6_8A_6_9A_6_10A_6_11A_6_12A_6_13A_6_14A_6_15A_6_16A_6_17A_7_1A_7_2A_7_3A_7_4A_7_5A_7_6A_7_7A_7_8A_7_9A_7_10A_7_11A_7_12A_7_13A_7_14A_7_15A_7_16A_7_17A_8_1A_8_2A_8_3A_8_4A_8_5A_8_6A_8_7A_8_8A_8_9A_8_10A_8_11A_8_12A_8_13A_8_14A_8_15A_8_16A_8_17A_9_1A_9_2A_9_3A_9_4A_9_5A_9_6A_9_7A_9_8A_9_9A_9_10A_9_11A_9_12A_9_13A_9_14A_9_15A_9_16A_9_17A_10_1A_10_2A_10_3A_10_4A_10_5A_10_6A_10_7A_10_8A_10_9A_10_10A_10_11A_10_12A_10_13A_10_14A_10_15A_10_16A_10_17A_11_1A_11_2A_11_3A_11_4A_11_5A_11_6A_11_7A_11_8A_11_9A_11_10A_11_11A_11_12A_11_13A_11_14A_11_15A_11_16A_11_17A_12_1A_12_2A_12_3A_12_4A_12_5A_12_6A_12_7A_12_8A_12_9A_12_10A_12_11A_12_12A_12_13A_12_14A_12_15A_12_16A_12_17A_13_1A_13_2A_13_3A_13_4A_13_5A_13_6A_13_7A_13_8A_13_9A_13_10A_13_11A_13_12A_13_13A_13_14A_13_15A_13_16A_13_17A_14_1A_14_2A_14_3A_14_4A_14_5A_14_6A_14_7A_14_8A_14_9A_14_10A_14_11A_14_12A_14_13A_14_14A_14_15A_14_16A_14_17A_15_1A_15_2A_15_3A_15_4A_15_5A_15_6A_15_7A_15_8A_15_9A_15_10A_15_11A_15_12A_15_13A_15_14A_15_15A_15_16A_15_17B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_1_12B_1_13B_1_14B_1_15B_1_16B_1_17B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_2_12B_2_13B_2_14B_2_15B_2_16B_2_17B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_3_12B_3_13B_3_14B_3_15B_3_16B_3_17B_4_1B_4_2B_4_3B_4_4B_4_5B_4_6B_4_7B_4_8B_4_9B_4_10B_4_11B_4_12B_4_13B_4_14B_4_15B_4_16B_4_17B_5_1B_5_2B_5_3B_5_4B_5_5B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_5_12B_5_13B_5_14B_5_15B_5_16B_5_17B_6_1B_6_2B_6_3B_6_4B_6_5B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11B_6_12B_6_13B_6_14B_6_15B_6_16B_6_17B_7_1B_7_2B_7_3B_7_4B_7_5B_7_6B_7_7B_7_8B_7_9B_7_10B_7_11B_7_12B_7_13B_7_14B_7_15B_7_16B_7_17B_8_1B_8_2B_8_3B_8_4B_8_5B_8_6B_8_7B_8_8B_8_9B_8_10B_8_11B_8_12B_8_13B_8_14B_8_15B_8_16B_8_17B_9_1B_9_2B_9_3B_9_4B_9_5B_9_6B_9_7B_9_8B_9_9B_9_10B_9_11B_9_12B_9_13B_9_14B_9_15B_9_16B_9_17B_10_1B_10_2B_10_3B_10_4B_10_5B_10_6B_10_7B_10_8B_10_9B_10_10B_10_11B_10_12B_10_13B_10_14B_10_15B_10_16B_10_17B_11_1B_11_2B_11_3B_11_4B_11_5B_11_6B_11_7B_11_8B_11_9B_11_10B_11_11B_11_12B_11_13B_11_14B_11_15B_11_16B_11_17B_12_1B_12_2B_12_3B_12_4B_12_5B_12_6B_12_7B_12_8B_12_9B_12_10B_12_11B_12_12B_12_13B_12_14B_12_15B_12_16B_12_17B_13_1B_13_2B_13_3B_13_4B_13_5B_13_6B_13_7B_13_8B_13_9B_13_10B_13_11B_13_12B_13_13B_13_14B_13_15B_13_16B_13_17B_14_1B_14_2B_14_3B_14_4B_14_5B_14_6B_14_7B_14_8B_14_9B_14_10B_14_11B_14_12B_14_13B_14_14B_14_15B_14_16B_14_17B_15_1B_15_2B_15_3B_15_4B_15_5B_15_6B_15_7B_15_8B_15_9B_15_10B_15_11B_15_12B_15_13B_15_14B_15_15B_15_16B_15_17B_16_1B_16_2B_16_3B_16_4B_16_5B_16_6B_16_7B_16_8B_16_9B_16_10B_16_11B_16_12B_16_13B_16_14B_16_15B_16_16B_16_17B_17_1B_17_2B_17_3B_17_4B_17_5B_17_6B_17_7B_17_8B_17_9B_17_10B_17_11B_17_12B_17_13B_17_14B_17_15B_17_16B_17_17C_1_1C_1_2C_1_3C_1_4C_1_5C_1_6C_1_7C_1_8C_1_9C_1_10C_1_11C_1_12C_1_13C_1_14C_1_15C_2_1C_2_2C_2_3C_2_4C_2_5C_2_6C_2_7C_2_8C_2_9C_2_10C_2_11C_2_12C_2_13C_2_14C_2_15C_3_1C_3_2C_3_3C_3_4C_3_5C_3_6C_3_7C_3_8C_3_9C_3_10C_3_11C_3_12C_3_13C_3_14C_3_15C_4_1C_4_2C_4_3C_4_4C_4_5C_4_6C_4_7C_4_8C_4_9C_4_10C_4_11C_4_12C_4_13C_4_14C_4_15C_5_1C_5_2C_5_3C_5_4C_5_5C_5_6C_5_7C_5_8C_5_9C_5_10C_5_11C_5_12C_5_13C_5_14C_5_15C_6_1C_6_2C_6_3C_6_4C_6_5C_6_6C_6_7C_6_8C_6_9C_6_10C_6_11C_6_12C_6_13C_6_14C_6_15C_7_1C_7_2C_7_3C_7_4C_7_5C_7_6C_7_7C_7_8C_7_9C_7_10C_7_11C_7_12C_7_13C_7_14C_7_15C_8_1C_8_2C_8_3C_8_4C_8_5C_8_6C_8_7C_8_8C_8_9C_8_10C_8_11C_8_12C_8_13C_8_14C_8_15C_9_1C_9_2C_9_3C_9_4C_9_5C_9_6C_9_7C_9_8C_9_9C_9_10C_9_11C_9_12C_9_13C_9_14C_9_15C_10_1C_10_2C_10_3C_10_4C_10_5C_10_6C_10_7C_10_8C_10_9C_10_10C_10_11C_10_12C_10_13C_10_14C_10_15C_11_1C_11_2C_11_3C_11_4C_11_5C_11_6C_11_7C_11_8C_11_9C_11_10C_11_11C_11_12C_11_13C_11_14C_11_15C_12_1C_12_2C_12_3C_12_4C_12_5C_12_6C_12_7C_12_8C_12_9C_12_10C_12_11C_12_12C_12_13C_12_14C_12_15C_13_1C_13_2C_13_3C_13_4C_13_5C_13_6C_13_7C_13_8C_13_9C_13_10C_13_11C_13_12C_13_13C_13_14C_13_15C_14_1C_14_2C_14_3C_14_4C_14_5C_14_6C_14_7C_14_8C_14_9C_14_10C_14_11C_14_12C_14_13C_14_14C_14_15C_15_1C_15_2C_15_3C_15_4C_15_5C_15_6C_15_7C_15_8C_15_9C_15_10C_15_11C_15_12C_15_13C_15_14C_15_15C_16_1C_16_2C_16_3C_16_4C_16_5C_16_6C_16_7C_16_8C_16_9C_16_10C_16_11C_16_12C_16_13C_16_14C_16_15C_17_1C_17_2C_17_3C_17_4C_17_5C_17_6C_17_7C_17_8C_17_9C_17_10C_17_11C_17_12C_17_13C_17_14C_17_15=TraceMulA_8_1-A_8_10A_8_2-A_8_11A_8_3-A_8_12A_8_4-A_8_13A_8_5-A_8_14A_8_6-A_8_15A_8_7-A_8_16A_8_8-A_8_17A_9_1-A_9_10A_9_2-A_9_11A_9_3-A_9_12A_9_4-A_9_13A_9_5-A_9_14A_9_6-A_9_15A_9_7-A_9_16A_9_8-A_9_17A_10_1-A_10_10A_10_2-A_10_11A_10_3-A_10_12A_10_4-A_10_13A_10_5-A_10_14A_10_6-A_10_15A_10_7-A_10_16A_10_8-A_10_17A_11_1-A_11_10A_11_2-A_11_11A_11_3-A_11_12A_11_4-A_11_13A_11_5-A_11_14A_11_6-A_11_15A_11_7-A_11_16A_11_8-A_11_17A_12_1-A_12_10A_12_2-A_12_11A_12_3-A_12_12A_12_4-A_12_13A_12_5-A_12_14A_12_6-A_12_15A_12_7-A_12_16A_12_8-A_12_17A_13_1-A_13_10A_13_2-A_13_11A_13_3-A_13_12A_13_4-A_13_13A_13_5-A_13_14A_13_6-A_13_15A_13_7-A_13_16A_13_8-A_13_17A_14_1-A_14_10A_14_2-A_14_11A_14_3-A_14_12A_14_4-A_14_13A_14_5-A_14_14A_14_6-A_14_15A_14_7-A_14_16A_14_8-A_14_17A_15_1-A_15_10A_15_2-A_15_11A_15_3-A_15_12A_15_4-A_15_13A_15_5-A_15_14A_15_6-A_15_15A_15_7-A_15_16A_15_8-A_15_17B_1_1-B_1_10B_1_2-B_1_11B_1_3-B_1_12B_1_4-B_1_13B_1_5-B_1_14B_1_6-B_1_15B_1_7-B_1_16B_1_8-B_1_17B_2_1-B_2_10B_2_2-B_2_11B_2_3-B_2_12B_2_4-B_2_13B_2_5-B_2_14B_2_6-B_2_15B_2_7-B_2_16B_2_8-B_2_17B_3_1-B_3_10B_3_2-B_3_11B_3_3-B_3_12B_3_4-B_3_13B_3_5-B_3_14B_3_6-B_3_15B_3_7-B_3_16B_3_8-B_3_17B_4_1-B_4_10B_4_2-B_4_11B_4_3-B_4_12B_4_4-B_4_13B_4_5-B_4_14B_4_6-B_4_15B_4_7-B_4_16B_4_8-B_4_17B_5_1-B_5_10B_5_2-B_5_11B_5_3-B_5_12B_5_4-B_5_13B_5_5-B_5_14B_5_6-B_5_15B_5_7-B_5_16B_5_8-B_5_17B_6_1-B_6_10B_6_2-B_6_11B_6_3-B_6_12B_6_4-B_6_13B_6_5-B_6_14B_6_6-B_6_15B_6_7-B_6_16B_6_8-B_6_17B_7_1-B_7_10B_7_2-B_7_11B_7_3-B_7_12B_7_4-B_7_13B_7_5-B_7_14B_7_6-B_7_15B_7_7-B_7_16B_7_8-B_7_17B_8_1-B_8_10B_8_2-B_8_11B_8_3-B_8_12B_8_4-B_8_13B_8_5-B_8_14B_8_6-B_8_15B_8_7-B_8_16B_8_8-B_8_17C_1_8-C_1_1+C_1_9-C_1_2+C_1_10-C_1_3+C_1_11-C_1_4+C_1_12-C_1_5+C_1_13-C_1_6+C_1_14-C_1_7+C_1_15C_2_8-C_2_1+C_2_9-C_2_2+C_2_10-C_2_3+C_2_11-C_2_4+C_2_12-C_2_5+C_2_13-C_2_6+C_2_14-C_2_7+C_2_15C_3_8-C_3_1+C_3_9-C_3_2+C_3_10-C_3_3+C_3_11-C_3_4+C_3_12-C_3_5+C_3_13-C_3_6+C_3_14-C_3_7+C_3_15C_4_8-C_4_1+C_4_9-C_4_2+C_4_10-C_4_3+C_4_11-C_4_4+C_4_12-C_4_5+C_4_13-C_4_6+C_4_14-C_4_7+C_4_15C_5_8-C_5_1+C_5_9-C_5_2+C_5_10-C_5_3+C_5_11-C_5_4+C_5_12-C_5_5+C_5_13-C_5_6+C_5_14-C_5_7+C_5_15C_6_8-C_6_1+C_6_9-C_6_2+C_6_10-C_6_3+C_6_11-C_6_4+C_6_12-C_6_5+C_6_13-C_6_6+C_6_14-C_6_7+C_6_15C_7_8-C_7_1+C_7_9-C_7_2+C_7_10-C_7_3+C_7_11-C_7_4+C_7_12-C_7_5+C_7_13-C_7_6+C_7_14-C_7_7+C_7_15C_8_8-C_8_1+C_8_9-C_8_2+C_8_10-C_8_3+C_8_11-C_8_4+C_8_12-C_8_5+C_8_13-C_8_6+C_8_14-C_8_7+C_8_15+TraceMulA_8_1A_8_2A_8_3A_8_4A_8_5A_8_6A_8_7A_8_8A_1_1+A_9_1A_1_2+A_9_2A_1_3+A_9_3A_1_4+A_9_4A_1_5+A_9_5A_1_6+A_9_6A_1_7+A_9_7A_1_8+A_9_8A_2_1+A_10_1A_2_2+A_10_2A_2_3+A_10_3A_2_4+A_10_4A_2_5+A_10_5A_2_6+A_10_6A_2_7+A_10_7A_2_8+A_10_8A_3_1+A_11_1A_3_2+A_11_2A_3_3+A_11_3A_3_4+A_11_4A_3_5+A_11_5A_3_6+A_11_6A_3_7+A_11_7A_3_8+A_11_8A_4_1+A_12_1A_4_2+A_12_2A_4_3+A_12_3A_4_4+A_12_4A_4_5+A_12_5A_4_6+A_12_6A_4_7+A_12_7A_4_8+A_12_8A_5_1+A_13_1A_5_2+A_13_2A_5_3+A_13_3A_5_4+A_13_4A_5_5+A_13_5A_5_6+A_13_6A_5_7+A_13_7A_5_8+A_13_8A_6_1+A_14_1A_6_2+A_14_2A_6_3+A_14_3A_6_4+A_14_4A_6_5+A_14_5A_6_6+A_14_6A_6_7+A_14_7A_6_8+A_14_8A_7_1+A_15_1A_7_2+A_15_2A_7_3+A_15_3A_7_4+A_15_4A_7_5+A_15_5A_7_6+A_15_6A_7_7+A_15_7A_7_8+A_15_8B_1_1+B_10_1B_1_2+B_10_2B_1_3+B_10_3B_1_4+B_10_4B_1_5+B_10_5B_1_6+B_10_6B_1_7+B_10_7B_1_8+B_10_8B_2_1+B_11_1B_2_2+B_11_2B_2_3+B_11_3B_2_4+B_11_4B_2_5+B_11_5B_2_6+B_11_6B_2_7+B_11_7B_2_8+B_11_8B_3_1+B_12_1B_3_2+B_12_2B_3_3+B_12_3B_3_4+B_12_4B_3_5+B_12_5B_3_6+B_12_6B_3_7+B_12_7B_3_8+B_12_8B_4_1+B_13_1B_4_2+B_13_2B_4_3+B_13_3B_4_4+B_13_4B_4_5+B_13_5B_4_6+B_13_6B_4_7+B_13_7B_4_8+B_13_8B_5_1+B_14_1B_5_2+B_14_2B_5_3+B_14_3B_5_4+B_14_4B_5_5+B_14_5B_5_6+B_14_6B_5_7+B_14_7B_5_8+B_14_8B_6_1+B_15_1B_6_2+B_15_2B_6_3+B_15_3B_6_4+B_15_4B_6_5+B_15_5B_6_6+B_15_6B_6_7+B_15_7B_6_8+B_15_8B_7_1+B_16_1B_7_2+B_16_2B_7_3+B_16_3B_7_4+B_16_4B_7_5+B_16_5B_7_6+B_16_6B_7_7+B_16_7B_7_8+B_16_8B_8_1+B_17_1B_8_2+B_17_2B_8_3+B_17_3B_8_4+B_17_4B_8_5+B_17_5B_8_6+B_17_6B_8_7+B_17_7B_8_8+B_17_8C_1_8+C_10_8C_1_9+C_10_9C_1_10+C_10_10C_1_11+C_10_11C_1_12+C_10_12C_1_13+C_10_13C_1_14+C_10_14C_1_15+C_10_15C_2_8+C_11_8C_2_9+C_11_9C_2_10+C_11_10C_2_11+C_11_11C_2_12+C_11_12C_2_13+C_11_13C_2_14+C_11_14C_2_15+C_11_15C_3_8+C_12_8C_3_9+C_12_9C_3_10+C_12_10C_3_11+C_12_11C_3_12+C_12_12C_3_13+C_12_13C_3_14+C_12_14C_3_15+C_12_15C_4_8+C_13_8C_4_9+C_13_9C_4_10+C_13_10C_4_11+C_13_11C_4_12+C_13_12C_4_13+C_13_13C_4_14+C_13_14C_4_15+C_13_15C_5_8+C_14_8C_5_9+C_14_9C_5_10+C_14_10C_5_11+C_14_11C_5_12+C_14_12C_5_13+C_14_13C_5_14+C_14_14C_5_15+C_14_15C_6_8+C_15_8C_6_9+C_15_9C_6_10+C_15_10C_6_11+C_15_11C_6_12+C_15_12C_6_13+C_15_13C_6_14+C_15_14C_6_15+C_15_15C_7_8+C_16_8C_7_9+C_16_9C_7_10+C_16_10C_7_11+C_16_11C_7_12+C_16_12C_7_13+C_16_13C_7_14+C_16_14C_7_15+C_16_15C_8_8+C_17_8C_8_9+C_17_9C_8_10+C_17_10C_8_11+C_17_11C_8_12+C_17_12C_8_13+C_17_13C_8_14+C_17_14C_8_15+C_17_15+TraceMulA_1_9A_1_10A_1_11A_1_12A_1_13A_1_14A_1_15A_1_16A_1_17A_2_9A_2_10A_2_11A_2_12A_2_13A_2_14A_2_15A_2_16A_2_17A_3_9A_3_10A_3_11A_3_12A_3_13A_3_14A_3_15A_3_16A_3_17A_4_9A_4_10A_4_11A_4_12A_4_13A_4_14A_4_15A_4_16A_4_17A_5_9A_5_10A_5_11A_5_12A_5_13A_5_14A_5_15A_5_16A_5_17A_6_9A_6_10A_6_11A_6_12A_6_13A_6_14A_6_15A_6_16A_6_17A_7_9A_7_10A_7_11A_7_12A_7_13A_7_14A_7_15A_7_16A_7_17B_9_9B_9_10B_9_11B_9_12B_9_13B_9_14B_9_15B_9_16B_9_17B_10_9B_10_10B_10_11B_10_12B_10_13B_10_14B_10_15B_10_16B_10_17B_11_9B_11_10B_11_11B_11_12B_11_13B_11_14B_11_15B_11_16B_11_17B_12_9B_12_10B_12_11B_12_12B_12_13B_12_14B_12_15B_12_16B_12_17B_13_9B_13_10B_13_11B_13_12B_13_13B_13_14B_13_15B_13_16B_13_17B_14_9B_14_10B_14_11B_14_12B_14_13B_14_14B_14_15B_14_16B_14_17B_15_9B_15_10B_15_11B_15_12B_15_13B_15_14B_15_15B_15_16B_15_17B_16_9B_16_10B_16_11B_16_12B_16_13B_16_14B_16_15B_16_16B_16_17B_17_9B_17_10B_17_11B_17_12B_17_13B_17_14B_17_15B_17_16B_17_17C_9_1C_9_2C_9_3C_9_4C_9_5C_9_6C_9_7C_10_1C_10_2C_10_3C_10_4C_10_5C_10_6C_10_7C_11_1C_11_2C_11_3C_11_4C_11_5C_11_6C_11_7C_12_1C_12_2C_12_3C_12_4C_12_5C_12_6C_12_7C_13_1C_13_2C_13_3C_13_4C_13_5C_13_6C_13_7C_14_1C_14_2C_14_3C_14_4C_14_5C_14_6C_14_7C_15_1C_15_2C_15_3C_15_4C_15_5C_15_6C_15_7C_16_1C_16_2C_16_3C_16_4C_16_5C_16_6C_16_7C_17_1C_17_2C_17_3C_17_4C_17_5C_17_6C_17_7+TraceMulA_8_9A_8_10A_8_11A_8_12A_8_13A_8_14A_8_15A_8_16A_8_17A_9_9A_9_10A_9_11A_9_12A_9_13A_9_14A_9_15A_9_16A_9_17A_10_9A_10_10A_10_11A_10_12A_10_13A_10_14A_10_15A_10_16A_10_17A_11_9A_11_10A_11_11A_11_12A_11_13A_11_14A_11_15A_11_16A_11_17A_12_9A_12_10A_12_11A_12_12A_12_13A_12_14A_12_15A_12_16A_12_17A_13_9A_13_10A_13_11A_13_12A_13_13A_13_14A_13_15A_13_16A_13_17A_14_9A_14_10A_14_11A_14_12A_14_13A_14_14A_14_15A_14_16A_14_17A_15_9A_15_10A_15_11A_15_12A_15_13A_15_14A_15_15A_15_16A_15_17B_9_9-B_9_1+B_9_10-B_9_2+B_9_11-B_9_3+B_9_12-B_9_4+B_9_13-B_9_5+B_9_14-B_9_6+B_9_15-B_9_7+B_9_16-B_9_8+B_9_17B_1_9+B_10_9-B_1_1-B_10_1+B_1_10+B_10_10-B_1_2-B_10_2+B_1_11+B_10_11-B_1_3-B_10_3+B_1_12+B_10_12-B_1_4-B_10_4+B_1_13+B_10_13-B_1_5-B_10_5+B_1_14+B_10_14-B_1_6-B_10_6+B_1_15+B_10_15-B_1_7-B_10_7+B_1_16+B_10_16-B_1_8-B_10_8+B_1_17+B_10_17B_2_9+B_11_9-B_2_1-B_11_1+B_2_10+B_11_10-B_2_2-B_11_2+B_2_11+B_11_11-B_2_3-B_11_3+B_2_12+B_11_12-B_2_4-B_11_4+B_2_13+B_11_13-B_2_5-B_11_5+B_2_14+B_11_14-B_2_6-B_11_6+B_2_15+B_11_15-B_2_7-B_11_7+B_2_16+B_11_16-B_2_8-B_11_8+B_2_17+B_11_17B_3_9+B_12_9-B_3_1-B_12_1+B_3_10+B_12_10-B_3_2-B_12_2+B_3_11+B_12_11-B_3_3-B_12_3+B_3_12+B_12_12-B_3_4-B_12_4+B_3_13+B_12_13-B_3_5-B_12_5+B_3_14+B_12_14-B_3_6-B_12_6+B_3_15+B_12_15-B_3_7-B_12_7+B_3_16+B_12_16-B_3_8-B_12_8+B_3_17+B_12_17B_4_9+B_13_9-B_4_1-B_13_1+B_4_10+B_13_10-B_4_2-B_13_2+B_4_11+B_13_11-B_4_3-B_13_3+B_4_12+B_13_12-B_4_4-B_13_4+B_4_13+B_13_13-B_4_5-B_13_5+B_4_14+B_13_14-B_4_6-B_13_6+B_4_15+B_13_15-B_4_7-B_13_7+B_4_16+B_13_16-B_4_8-B_13_8+B_4_17+B_13_17B_5_9+B_14_9-B_5_1-B_14_1+B_5_10+B_14_10-B_5_2-B_14_2+B_5_11+B_14_11-B_5_3-B_14_3+B_5_12+B_14_12-B_5_4-B_14_4+B_5_13+B_14_13-B_5_5-B_14_5+B_5_14+B_14_14-B_5_6-B_14_6+B_5_15+B_14_15-B_5_7-B_14_7+B_5_16+B_14_16-B_5_8-B_14_8+B_5_17+B_14_17B_6_9+B_15_9-B_6_1-B_15_1+B_6_10+B_15_10-B_6_2-B_15_2+B_6_11+B_15_11-B_6_3-B_15_3+B_6_12+B_15_12-B_6_4-B_15_4+B_6_13+B_15_13-B_6_5-B_15_5+B_6_14+B_15_14-B_6_6-B_15_6+B_6_15+B_15_15-B_6_7-B_15_7+B_6_16+B_15_16-B_6_8-B_15_8+B_6_17+B_15_17B_7_9+B_16_9-B_7_1-B_16_1+B_7_10+B_16_10-B_7_2-B_16_2+B_7_11+B_16_11-B_7_3-B_16_3+B_7_12+B_16_12-B_7_4-B_16_4+B_7_13+B_16_13-B_7_5-B_16_5+B_7_14+B_16_14-B_7_6-B_16_6+B_7_15+B_16_15-B_7_7-B_16_7+B_7_16+B_16_16-B_7_8-B_16_8+B_7_17+B_16_17B_8_9+B_17_9-B_8_1-B_17_1+B_8_10+B_17_10-B_8_2-B_17_2+B_8_11+B_17_11-B_8_3-B_17_3+B_8_12+B_17_12-B_8_4-B_17_4+B_8_13+B_17_13-B_8_5-B_17_5+B_8_14+B_17_14-B_8_6-B_17_6+B_8_15+B_17_15-B_8_7-B_17_7+B_8_16+B_17_16-B_8_8-B_17_8+B_8_17+B_17_17C_9_8C_9_9C_9_10C_9_11C_9_12C_9_13C_9_14C_9_15C_10_8C_10_9C_10_10C_10_11C_10_12C_10_13C_10_14C_10_15C_11_8C_11_9C_11_10C_11_11C_11_12C_11_13C_11_14C_11_15C_12_8C_12_9C_12_10C_12_11C_12_12C_12_13C_12_14C_12_15C_13_8C_13_9C_13_10C_13_11C_13_12C_13_13C_13_14C_13_15C_14_8C_14_9C_14_10C_14_11C_14_12C_14_13C_14_14C_14_15C_15_8C_15_9C_15_10C_15_11C_15_12C_15_13C_15_14C_15_15C_16_8C_16_9C_16_10C_16_11C_16_12C_16_13C_16_14C_16_15C_17_8C_17_9C_17_10C_17_11C_17_12C_17_13C_17_14C_17_15+TraceMulA_1_9+A_9_9-A_1_1-A_9_1+A_1_10+A_9_10-A_1_2-A_9_2+A_1_11+A_9_11-A_1_3-A_9_3+A_1_12+A_9_12-A_1_4-A_9_4+A_1_13+A_9_13-A_1_5-A_9_5+A_1_14+A_9_14-A_1_6-A_9_6+A_1_15+A_9_15-A_1_7-A_9_7+A_1_16+A_9_16-A_1_8-A_9_8+A_1_17+A_9_17A_2_9+A_10_9-A_2_1-A_10_1+A_2_10+A_10_10-A_2_2-A_10_2+A_2_11+A_10_11-A_2_3-A_10_3+A_2_12+A_10_12-A_2_4-A_10_4+A_2_13+A_10_13-A_2_5-A_10_5+A_2_14+A_10_14-A_2_6-A_10_6+A_2_15+A_10_15-A_2_7-A_10_7+A_2_16+A_10_16-A_2_8-A_10_8+A_2_17+A_10_17A_3_9+A_11_9-A_3_1-A_11_1+A_3_10+A_11_10-A_3_2-A_11_2+A_3_11+A_11_11-A_3_3-A_11_3+A_3_12+A_11_12-A_3_4-A_11_4+A_3_13+A_11_13-A_3_5-A_11_5+A_3_14+A_11_14-A_3_6-A_11_6+A_3_15+A_11_15-A_3_7-A_11_7+A_3_16+A_11_16-A_3_8-A_11_8+A_3_17+A_11_17A_4_9+A_12_9-A_4_1-A_12_1+A_4_10+A_12_10-A_4_2-A_12_2+A_4_11+A_12_11-A_4_3-A_12_3+A_4_12+A_12_12-A_4_4-A_12_4+A_4_13+A_12_13-A_4_5-A_12_5+A_4_14+A_12_14-A_4_6-A_12_6+A_4_15+A_12_15-A_4_7-A_12_7+A_4_16+A_12_16-A_4_8-A_12_8+A_4_17+A_12_17A_5_9+A_13_9-A_5_1-A_13_1+A_5_10+A_13_10-A_5_2-A_13_2+A_5_11+A_13_11-A_5_3-A_13_3+A_5_12+A_13_12-A_5_4-A_13_4+A_5_13+A_13_13-A_5_5-A_13_5+A_5_14+A_13_14-A_5_6-A_13_6+A_5_15+A_13_15-A_5_7-A_13_7+A_5_16+A_13_16-A_5_8-A_13_8+A_5_17+A_13_17A_6_9+A_14_9-A_6_1-A_14_1+A_6_10+A_14_10-A_6_2-A_14_2+A_6_11+A_14_11-A_6_3-A_14_3+A_6_12+A_14_12-A_6_4-A_14_4+A_6_13+A_14_13-A_6_5-A_14_5+A_6_14+A_14_14-A_6_6-A_14_6+A_6_15+A_14_15-A_6_7-A_14_7+A_6_16+A_14_16-A_6_8-A_14_8+A_6_17+A_14_17A_7_9+A_15_9-A_7_1-A_15_1+A_7_10+A_15_10-A_7_2-A_15_2+A_7_11+A_15_11-A_7_3-A_15_3+A_7_12+A_15_12-A_7_4-A_15_4+A_7_13+A_15_13-A_7_5-A_15_5+A_7_14+A_15_14-A_7_6-A_15_6+A_7_15+A_15_15-A_7_7-A_15_7+A_7_16+A_15_16-A_7_8-A_15_8+A_7_17+A_15_17B_9_1B_9_2B_9_3B_9_4B_9_5B_9_6B_9_7B_9_8B_10_1B_10_2B_10_3B_10_4B_10_5B_10_6B_10_7B_10_8B_11_1B_11_2B_11_3B_11_4B_11_5B_11_6B_11_7B_11_8B_12_1B_12_2B_12_3B_12_4B_12_5B_12_6B_12_7B_12_8B_13_1B_13_2B_13_3B_13_4B_13_5B_13_6B_13_7B_13_8B_14_1B_14_2B_14_3B_14_4B_14_5B_14_6B_14_7B_14_8B_15_1B_15_2B_15_3B_15_4B_15_5B_15_6B_15_7B_15_8B_16_1B_16_2B_16_3B_16_4B_16_5B_16_6B_16_7B_16_8B_17_1B_17_2B_17_3B_17_4B_17_5B_17_6B_17_7B_17_8C_1_1C_1_2C_1_3C_1_4C_1_5C_1_6C_1_7C_2_1C_2_2C_2_3C_2_4C_2_5C_2_6C_2_7C_3_1C_3_2C_3_3C_3_4C_3_5C_3_6C_3_7C_4_1C_4_2C_4_3C_4_4C_4_5C_4_6C_4_7C_5_1C_5_2C_5_3C_5_4C_5_5C_5_6C_5_7C_6_1C_6_2C_6_3C_6_4C_6_5C_6_6C_6_7C_7_1C_7_2C_7_3C_7_4C_7_5C_7_6C_7_7C_8_1C_8_2C_8_3C_8_4C_8_5C_8_6C_8_7+TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_1_8A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_2_8A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_3_8A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_4_8A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6A_5_7A_5_8A_6_1A_6_2A_6_3A_6_4A_6_5A_6_6A_6_7A_6_8A_7_1A_7_2A_7_3A_7_4A_7_5A_7_6A_7_7A_7_8B_1_9B_1_10B_1_11B_1_12B_1_13B_1_14B_1_15B_1_16B_1_17B_2_9B_2_10B_2_11B_2_12B_2_13B_2_14B_2_15B_2_16B_2_17B_3_9B_3_10B_3_11B_3_12B_3_13B_3_14B_3_15B_3_16B_3_17B_4_9B_4_10B_4_11B_4_12B_4_13B_4_14B_4_15B_4_16B_4_17B_5_9B_5_10B_5_11B_5_12B_5_13B_5_14B_5_15B_5_16B_5_17B_6_9B_6_10B_6_11B_6_12B_6_13B_6_14B_6_15B_6_16B_6_17B_7_9B_7_10B_7_11B_7_12B_7_13B_7_14B_7_15B_7_16B_7_17B_8_9B_8_10B_8_11B_8_12B_8_13B_8_14B_8_15B_8_16B_8_17C_9_1-C_9_9C_9_2-C_9_10C_9_3-C_9_11C_9_4-C_9_12C_9_5-C_9_13C_9_6-C_9_14C_9_7-C_9_15C_1_1+C_10_1-C_1_9-C_10_9C_1_2+C_10_2-C_1_10-C_10_10C_1_3+C_10_3-C_1_11-C_10_11C_1_4+C_10_4-C_1_12-C_10_12C_1_5+C_10_5-C_1_13-C_10_13C_1_6+C_10_6-C_1_14-C_10_14C_1_7+C_10_7-C_1_15-C_10_15C_2_1+C_11_1-C_2_9-C_11_9C_2_2+C_11_2-C_2_10-C_11_10C_2_3+C_11_3-C_2_11-C_11_11C_2_4+C_11_4-C_2_12-C_11_12C_2_5+C_11_5-C_2_13-C_11_13C_2_6+C_11_6-C_2_14-C_11_14C_2_7+C_11_7-C_2_15-C_11_15C_3_1+C_12_1-C_3_9-C_12_9C_3_2+C_12_2-C_3_10-C_12_10C_3_3+C_12_3-C_3_11-C_12_11C_3_4+C_12_4-C_3_12-C_12_12C_3_5+C_12_5-C_3_13-C_12_13C_3_6+C_12_6-C_3_14-C_12_14C_3_7+C_12_7-C_3_15-C_12_15C_4_1+C_13_1-C_4_9-C_13_9C_4_2+C_13_2-C_4_10-C_13_10C_4_3+C_13_3-C_4_11-C_13_11C_4_4+C_13_4-C_4_12-C_13_12C_4_5+C_13_5-C_4_13-C_13_13C_4_6+C_13_6-C_4_14-C_13_14C_4_7+C_13_7-C_4_15-C_13_15C_5_1+C_14_1-C_5_9-C_14_9C_5_2+C_14_2-C_5_10-C_14_10C_5_3+C_14_3-C_5_11-C_14_11C_5_4+C_14_4-C_5_12-C_14_12C_5_5+C_14_5-C_5_13-C_14_13C_5_6+C_14_6-C_5_14-C_14_14C_5_7+C_14_7-C_5_15-C_14_15C_6_1+C_15_1-C_6_9-C_15_9C_6_2+C_15_2-C_6_10-C_15_10C_6_3+C_15_3-C_6_11-C_15_11C_6_4+C_15_4-C_6_12-C_15_12C_6_5+C_15_5-C_6_13-C_15_13C_6_6+C_15_6-C_6_14-C_15_14C_6_7+C_15_7-C_6_15-C_15_15C_7_1+C_16_1-C_7_9-C_16_9C_7_2+C_16_2-C_7_10-C_16_10C_7_3+C_16_3-C_7_11-C_16_11C_7_4+C_16_4-C_7_12-C_16_12C_7_5+C_16_5-C_7_13-C_16_13C_7_6+C_16_6-C_7_14-C_16_14C_7_7+C_16_7-C_7_15-C_16_15C_8_1+C_17_1-C_8_9-C_17_9C_8_2+C_17_2-C_8_10-C_17_10C_8_3+C_17_3-C_8_11-C_17_11C_8_4+C_17_4-C_8_12-C_17_12C_8_5+C_17_5-C_8_13-C_17_13C_8_6+C_17_6-C_8_14-C_17_14C_8_7+C_17_7-C_8_15-C_17_15+TraceMulA_8_9-A_8_1+A_8_10-A_8_2+A_8_11-A_8_3+A_8_12-A_8_4+A_8_13-A_8_5+A_8_14-A_8_6+A_8_15-A_8_7+A_8_16-A_8_8+A_8_17A_9_9-A_1_1-A_9_1+A_9_10-A_1_2-A_9_2+A_9_11-A_1_3-A_9_3+A_9_12-A_1_4-A_9_4+A_9_13-A_1_5-A_9_5+A_9_14-A_1_6-A_9_6+A_9_15-A_1_7-A_9_7+A_9_16-A_1_8-A_9_8+A_9_17A_10_9-A_2_1-A_10_1+A_10_10-A_2_2-A_10_2+A_10_11-A_2_3-A_10_3+A_10_12-A_2_4-A_10_4+A_10_13-A_2_5-A_10_5+A_10_14-A_2_6-A_10_6+A_10_15-A_2_7-A_10_7+A_10_16-A_2_8-A_10_8+A_10_17A_11_9-A_3_1-A_11_1+A_11_10-A_3_2-A_11_2+A_11_11-A_3_3-A_11_3+A_11_12-A_3_4-A_11_4+A_11_13-A_3_5-A_11_5+A_11_14-A_3_6-A_11_6+A_11_15-A_3_7-A_11_7+A_11_16-A_3_8-A_11_8+A_11_17A_12_9-A_4_1-A_12_1+A_12_10-A_4_2-A_12_2+A_12_11-A_4_3-A_12_3+A_12_12-A_4_4-A_12_4+A_12_13-A_4_5-A_12_5+A_12_14-A_4_6-A_12_6+A_12_15-A_4_7-A_12_7+A_12_16-A_4_8-A_12_8+A_12_17A_13_9-A_5_1-A_13_1+A_13_10-A_5_2-A_13_2+A_13_11-A_5_3-A_13_3+A_13_12-A_5_4-A_13_4+A_13_13-A_5_5-A_13_5+A_13_14-A_5_6-A_13_6+A_13_15-A_5_7-A_13_7+A_13_16-A_5_8-A_13_8+A_13_17A_14_9-A_6_1-A_14_1+A_14_10-A_6_2-A_14_2+A_14_11-A_6_3-A_14_3+A_14_12-A_6_4-A_14_4+A_14_13-A_6_5-A_14_5+A_14_14-A_6_6-A_14_6+A_14_15-A_6_7-A_14_7+A_14_16-A_6_8-A_14_8+A_14_17A_15_9-A_7_1-A_15_1+A_15_10-A_7_2-A_15_2+A_15_11-A_7_3-A_15_3+A_15_12-A_7_4-A_15_4+A_15_13-A_7_5-A_15_5+A_15_14-A_7_6-A_15_6+A_15_15-A_7_7-A_15_7+A_15_16-A_7_8-A_15_8+A_15_170B_9_1B_9_2B_9_3B_9_4B_9_5B_9_6B_9_7B_9_8-B_1_9B_1_1+B_10_1-B_1_10B_1_2+B_10_2-B_1_11B_1_3+B_10_3-B_1_12B_1_4+B_10_4-B_1_13B_1_5+B_10_5-B_1_14B_1_6+B_10_6-B_1_15B_1_7+B_10_7-B_1_16B_1_8+B_10_8-B_1_17-B_2_9B_2_1+B_11_1-B_2_10B_2_2+B_11_2-B_2_11B_2_3+B_11_3-B_2_12B_2_4+B_11_4-B_2_13B_2_5+B_11_5-B_2_14B_2_6+B_11_6-B_2_15B_2_7+B_11_7-B_2_16B_2_8+B_11_8-B_2_17-B_3_9B_3_1+B_12_1-B_3_10B_3_2+B_12_2-B_3_11B_3_3+B_12_3-B_3_12B_3_4+B_12_4-B_3_13B_3_5+B_12_5-B_3_14B_3_6+B_12_6-B_3_15B_3_7+B_12_7-B_3_16B_3_8+B_12_8-B_3_17-B_4_9B_4_1+B_13_1-B_4_10B_4_2+B_13_2-B_4_11B_4_3+B_13_3-B_4_12B_4_4+B_13_4-B_4_13B_4_5+B_13_5-B_4_14B_4_6+B_13_6-B_4_15B_4_7+B_13_7-B_4_16B_4_8+B_13_8-B_4_17-B_5_9B_5_1+B_14_1-B_5_10B_5_2+B_14_2-B_5_11B_5_3+B_14_3-B_5_12B_5_4+B_14_4-B_5_13B_5_5+B_14_5-B_5_14B_5_6+B_14_6-B_5_15B_5_7+B_14_7-B_5_16B_5_8+B_14_8-B_5_17-B_6_9B_6_1+B_15_1-B_6_10B_6_2+B_15_2-B_6_11B_6_3+B_15_3-B_6_12B_6_4+B_15_4-B_6_13B_6_5+B_15_5-B_6_14B_6_6+B_15_6-B_6_15B_6_7+B_15_7-B_6_16B_6_8+B_15_8-B_6_17-B_7_9B_7_1+B_16_1-B_7_10B_7_2+B_16_2-B_7_11B_7_3+B_16_3-B_7_12B_7_4+B_16_4-B_7_13B_7_5+B_16_5-B_7_14B_7_6+B_16_6-B_7_15B_7_7+B_16_7-B_7_16B_7_8+B_16_8-B_7_17-B_8_9B_8_1+B_17_1-B_8_10B_8_2+B_17_2-B_8_11B_8_3+B_17_3-B_8_12B_8_4+B_17_4-B_8_13B_8_5+B_17_5-B_8_14B_8_6+B_17_6-B_8_15B_8_7+B_17_7-B_8_16B_8_8+B_17_8-B_8_17C_9_8C_9_9C_9_10C_9_11C_9_12C_9_13C_9_14C_9_15C_1_8+C_10_8-C_1_1+C_1_9+C_10_9-C_1_2+C_1_10+C_10_10-C_1_3+C_1_11+C_10_11-C_1_4+C_1_12+C_10_12-C_1_5+C_1_13+C_10_13-C_1_6+C_1_14+C_10_14-C_1_7+C_1_15+C_10_15C_2_8+C_11_8-C_2_1+C_2_9+C_11_9-C_2_2+C_2_10+C_11_10-C_2_3+C_2_11+C_11_11-C_2_4+C_2_12+C_11_12-C_2_5+C_2_13+C_11_13-C_2_6+C_2_14+C_11_14-C_2_7+C_2_15+C_11_15C_3_8+C_12_8-C_3_1+C_3_9+C_12_9-C_3_2+C_3_10+C_12_10-C_3_3+C_3_11+C_12_11-C_3_4+C_3_12+C_12_12-C_3_5+C_3_13+C_12_13-C_3_6+C_3_14+C_12_14-C_3_7+C_3_15+C_12_15C_4_8+C_13_8-C_4_1+C_4_9+C_13_9-C_4_2+C_4_10+C_13_10-C_4_3+C_4_11+C_13_11-C_4_4+C_4_12+C_13_12-C_4_5+C_4_13+C_13_13-C_4_6+C_4_14+C_13_14-C_4_7+C_4_15+C_13_15C_5_8+C_14_8-C_5_1+C_5_9+C_14_9-C_5_2+C_5_10+C_14_10-C_5_3+C_5_11+C_14_11-C_5_4+C_5_12+C_14_12-C_5_5+C_5_13+C_14_13-C_5_6+C_5_14+C_14_14-C_5_7+C_5_15+C_14_15C_6_8+C_15_8-C_6_1+C_6_9+C_15_9-C_6_2+C_6_10+C_15_10-C_6_3+C_6_11+C_15_11-C_6_4+C_6_12+C_15_12-C_6_5+C_6_13+C_15_13-C_6_6+C_6_14+C_15_14-C_6_7+C_6_15+C_15_15C_7_8+C_16_8-C_7_1+C_7_9+C_16_9-C_7_2+C_7_10+C_16_10-C_7_3+C_7_11+C_16_11-C_7_4+C_7_12+C_16_12-C_7_5+C_7_13+C_16_13-C_7_6+C_7_14+C_16_14-C_7_7+C_7_15+C_16_15C_8_8+C_17_8-C_8_1+C_8_9+C_17_9-C_8_2+C_8_10+C_17_10-C_8_3+C_8_11+C_17_11-C_8_4+C_8_12+C_17_12-C_8_5+C_8_13+C_17_13-C_8_6+C_8_14+C_17_14-C_8_7+C_8_15+C_17_15

N.B.: for any matrices A, B and C such that the expression Tr(Mul(A,B,C)) is defined, one can construct several trilinear homogeneous polynomials P(A,B,C) such that P(A,B,C)=Tr(Mul(A,B,C)) (P(A,B,C) variables are A,B and C's coefficients). Each trilinear P expression encodes a matrix multiplication algorithm: the coefficient in C_i_j of P(A,B,C) is the (i,j)-th entry of the matrix product Mul(A,B)=Transpose(C).

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table