Description of fast matrix multiplication algorithm: ⟨15×16×25:3572⟩

Algorithm type

12X12YZ+13X4Y4Z6+8XY12Z+4X2Y2Z9+52X8Y2Z2+299X4Y4Z4+52X2Y8Z2+2X2Y4Z6+4X8Y2Z+3X6Y2Z3+X4Y4Z3+4X2Y8Z+2X2Y6Z3+8XY8Z2+52XYZ9+12X8YZ+69X6Y2Z2+23X4Y4Z2+46X2Y6Z2+150X2Y4Z4+267X2Y2Z6+32XY8Z+3X4Y2Z3+8X2Y4Z3+16XY6Z2+16XY4Z4+58XY2Z6+8X4Y3Z+77X4Y2Z2+16X4YZ3+12X3Y4Z+244X2Y4Z2+190X2Y2Z4+8XY6Z+16XY4Z3+94XYZ6+32X4Y2Z+24X4YZ2+24X3Y2Z2+39X3YZ3+16X2Y4Z+18X2Y2Z3+96XY4Z2+26XY3Z3+56XY2Z4+20X4YZ+12X3Y2Z+12X3YZ2+338X2Y2Z2+39X2YZ3+52XY4Z+8XY3Z2+120XY2Z3+24XYZ4+45X3YZ+27X2Y2Z+12X2YZ2+30XY3Z+126XY2Z2+125XYZ3+45X2YZ+140XY2Z+110XYZ2+75XYZ12X12YZ13X4Y4Z68XY12Z4X2Y2Z952X8Y2Z2299X4Y4Z452X2Y8Z22X2Y4Z64X8Y2Z3X6Y2Z3X4Y4Z34X2Y8Z2X2Y6Z38XY8Z252XYZ912X8YZ69X6Y2Z223X4Y4Z246X2Y6Z2150X2Y4Z4267X2Y2Z632XY8Z3X4Y2Z38X2Y4Z316XY6Z216XY4Z458XY2Z68X4Y3Z77X4Y2Z216X4YZ312X3Y4Z244X2Y4Z2190X2Y2Z48XY6Z16XY4Z394XYZ632X4Y2Z24X4YZ224X3Y2Z239X3YZ316X2Y4Z18X2Y2Z396XY4Z226XY3Z356XY2Z420X4YZ12X3Y2Z12X3YZ2338X2Y2Z239X2YZ352XY4Z8XY3Z2120XY2Z324XYZ445X3YZ27X2Y2Z12X2YZ230XY3Z126XY2Z2125XYZ345X2YZ140XY2Z110XYZ275XYZ12*X^12*Y*Z+13*X^4*Y^4*Z^6+8*X*Y^12*Z+4*X^2*Y^2*Z^9+52*X^8*Y^2*Z^2+299*X^4*Y^4*Z^4+52*X^2*Y^8*Z^2+2*X^2*Y^4*Z^6+4*X^8*Y^2*Z+3*X^6*Y^2*Z^3+X^4*Y^4*Z^3+4*X^2*Y^8*Z+2*X^2*Y^6*Z^3+8*X*Y^8*Z^2+52*X*Y*Z^9+12*X^8*Y*Z+69*X^6*Y^2*Z^2+23*X^4*Y^4*Z^2+46*X^2*Y^6*Z^2+150*X^2*Y^4*Z^4+267*X^2*Y^2*Z^6+32*X*Y^8*Z+3*X^4*Y^2*Z^3+8*X^2*Y^4*Z^3+16*X*Y^6*Z^2+16*X*Y^4*Z^4+58*X*Y^2*Z^6+8*X^4*Y^3*Z+77*X^4*Y^2*Z^2+16*X^4*Y*Z^3+12*X^3*Y^4*Z+244*X^2*Y^4*Z^2+190*X^2*Y^2*Z^4+8*X*Y^6*Z+16*X*Y^4*Z^3+94*X*Y*Z^6+32*X^4*Y^2*Z+24*X^4*Y*Z^2+24*X^3*Y^2*Z^2+39*X^3*Y*Z^3+16*X^2*Y^4*Z+18*X^2*Y^2*Z^3+96*X*Y^4*Z^2+26*X*Y^3*Z^3+56*X*Y^2*Z^4+20*X^4*Y*Z+12*X^3*Y^2*Z+12*X^3*Y*Z^2+338*X^2*Y^2*Z^2+39*X^2*Y*Z^3+52*X*Y^4*Z+8*X*Y^3*Z^2+120*X*Y^2*Z^3+24*X*Y*Z^4+45*X^3*Y*Z+27*X^2*Y^2*Z+12*X^2*Y*Z^2+30*X*Y^3*Z+126*X*Y^2*Z^2+125*X*Y*Z^3+45*X^2*Y*Z+140*X*Y^2*Z+110*X*Y*Z^2+75*X*Y*Z

Algorithm definition

The algorithm ⟨15×16×25:3572⟩ is the (Kronecker) tensor product of ⟨3×4×5:47⟩ with ⟨5×4×5:76⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table