Description of fast matrix multiplication algorithm: ⟨15×16×24:3294⟩

Algorithm type

108X4Y6Z4+18X4Y4Z6+18X4Y2Z8+36X4Y6Z2+162X4Y4Z4+18X4Y2Z6+36X2Y4Z6+18X2YZ8+36X6Y2Z2+72X4Y2Z4+252X2Y6Z2+72X2Y4Z4+18X2Y2Z6+36X2Y6Z+18X2Y4Z3+108X2Y3Z4+18X2YZ6+36XY2Z6+36X4Y2Z2+342X2Y4Z2+180X2Y2Z4+144XY6Z+36XY4Z3+36X2Y3Z2+18X2Y2Z3+72X2YZ4+72XY4Z2+72XY2Z4+36X3Y2Z+36X3YZ2+234X2Y2Z2+180XY4Z+144XY3Z2+36X2Y2Z+36X2YZ2+180XY2Z2+162XY2Z+162XYZ2108X4Y6Z418X4Y4Z618X4Y2Z836X4Y6Z2162X4Y4Z418X4Y2Z636X2Y4Z618X2YZ836X6Y2Z272X4Y2Z4252X2Y6Z272X2Y4Z418X2Y2Z636X2Y6Z18X2Y4Z3108X2Y3Z418X2YZ636XY2Z636X4Y2Z2342X2Y4Z2180X2Y2Z4144XY6Z36XY4Z336X2Y3Z218X2Y2Z372X2YZ472XY4Z272XY2Z436X3Y2Z36X3YZ2234X2Y2Z2180XY4Z144XY3Z236X2Y2Z36X2YZ2180XY2Z2162XY2Z162XYZ2108*X^4*Y^6*Z^4+18*X^4*Y^4*Z^6+18*X^4*Y^2*Z^8+36*X^4*Y^6*Z^2+162*X^4*Y^4*Z^4+18*X^4*Y^2*Z^6+36*X^2*Y^4*Z^6+18*X^2*Y*Z^8+36*X^6*Y^2*Z^2+72*X^4*Y^2*Z^4+252*X^2*Y^6*Z^2+72*X^2*Y^4*Z^4+18*X^2*Y^2*Z^6+36*X^2*Y^6*Z+18*X^2*Y^4*Z^3+108*X^2*Y^3*Z^4+18*X^2*Y*Z^6+36*X*Y^2*Z^6+36*X^4*Y^2*Z^2+342*X^2*Y^4*Z^2+180*X^2*Y^2*Z^4+144*X*Y^6*Z+36*X*Y^4*Z^3+36*X^2*Y^3*Z^2+18*X^2*Y^2*Z^3+72*X^2*Y*Z^4+72*X*Y^4*Z^2+72*X*Y^2*Z^4+36*X^3*Y^2*Z+36*X^3*Y*Z^2+234*X^2*Y^2*Z^2+180*X*Y^4*Z+144*X*Y^3*Z^2+36*X^2*Y^2*Z+36*X^2*Y*Z^2+180*X*Y^2*Z^2+162*X*Y^2*Z+162*X*Y*Z^2

Algorithm definition

The algorithm ⟨15×16×24:3294⟩ is the (Kronecker) tensor product of ⟨3×4×6:54⟩ with ⟨5×4×4:61⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table