Description of fast matrix multiplication algorithm: ⟨15×16×20:2888⟩

Algorithm type

12X12YZ+10X4Y4Z6+8XY12Z+3X2Y2Z9+40X8Y2Z2+230X4Y4Z4+40X2Y8Z2+2X2Y4Z6+8X8Y2Z+3X6Y2Z3+2X4Y4Z3+8X2Y8Z+2X2Y6Z3+8XY8Z2+39XYZ9+4X8YZ+69X6Y2Z2+46X4Y4Z2+46X2Y6Z2+126X2Y4Z4+200X2Y2Z6+44XY8Z+X4Y2Z3+11X2Y4Z3+16XY6Z2+16XY4Z4+50XY2Z6+8X4Y3Z+31X4Y2Z2+12X4YZ3+12X3Y4Z+309X2Y4Z2+63X2Y2Z4+8XY6Z+12XY4Z3+25XYZ6+44X4Y2Z+4X4YZ2+24X3Y2Z2+39X3YZ3+12X2Y4Z+29X2Y2Z3+100XY4Z2+26XY3Z3+16XY2Z4+12X4YZ+12X3Y2Z+12X3YZ2+235X2Y2Z2+13X2YZ3+56XY4Z+8XY3Z2+155XY2Z3+4XYZ4+45X3YZ+34X2Y2Z+4X2YZ2+30XY3Z+102XY2Z2+84XYZ3+15X2YZ+177XY2Z+27XYZ2+45XYZ12X12YZ10X4Y4Z68XY12Z3X2Y2Z940X8Y2Z2230X4Y4Z440X2Y8Z22X2Y4Z68X8Y2Z3X6Y2Z32X4Y4Z38X2Y8Z2X2Y6Z38XY8Z239XYZ94X8YZ69X6Y2Z246X4Y4Z246X2Y6Z2126X2Y4Z4200X2Y2Z644XY8ZX4Y2Z311X2Y4Z316XY6Z216XY4Z450XY2Z68X4Y3Z31X4Y2Z212X4YZ312X3Y4Z309X2Y4Z263X2Y2Z48XY6Z12XY4Z325XYZ644X4Y2Z4X4YZ224X3Y2Z239X3YZ312X2Y4Z29X2Y2Z3100XY4Z226XY3Z316XY2Z412X4YZ12X3Y2Z12X3YZ2235X2Y2Z213X2YZ356XY4Z8XY3Z2155XY2Z34XYZ445X3YZ34X2Y2Z4X2YZ230XY3Z102XY2Z284XYZ315X2YZ177XY2Z27XYZ245XYZ12*X^12*Y*Z+10*X^4*Y^4*Z^6+8*X*Y^12*Z+3*X^2*Y^2*Z^9+40*X^8*Y^2*Z^2+230*X^4*Y^4*Z^4+40*X^2*Y^8*Z^2+2*X^2*Y^4*Z^6+8*X^8*Y^2*Z+3*X^6*Y^2*Z^3+2*X^4*Y^4*Z^3+8*X^2*Y^8*Z+2*X^2*Y^6*Z^3+8*X*Y^8*Z^2+39*X*Y*Z^9+4*X^8*Y*Z+69*X^6*Y^2*Z^2+46*X^4*Y^4*Z^2+46*X^2*Y^6*Z^2+126*X^2*Y^4*Z^4+200*X^2*Y^2*Z^6+44*X*Y^8*Z+X^4*Y^2*Z^3+11*X^2*Y^4*Z^3+16*X*Y^6*Z^2+16*X*Y^4*Z^4+50*X*Y^2*Z^6+8*X^4*Y^3*Z+31*X^4*Y^2*Z^2+12*X^4*Y*Z^3+12*X^3*Y^4*Z+309*X^2*Y^4*Z^2+63*X^2*Y^2*Z^4+8*X*Y^6*Z+12*X*Y^4*Z^3+25*X*Y*Z^6+44*X^4*Y^2*Z+4*X^4*Y*Z^2+24*X^3*Y^2*Z^2+39*X^3*Y*Z^3+12*X^2*Y^4*Z+29*X^2*Y^2*Z^3+100*X*Y^4*Z^2+26*X*Y^3*Z^3+16*X*Y^2*Z^4+12*X^4*Y*Z+12*X^3*Y^2*Z+12*X^3*Y*Z^2+235*X^2*Y^2*Z^2+13*X^2*Y*Z^3+56*X*Y^4*Z+8*X*Y^3*Z^2+155*X*Y^2*Z^3+4*X*Y*Z^4+45*X^3*Y*Z+34*X^2*Y^2*Z+4*X^2*Y*Z^2+30*X*Y^3*Z+102*X*Y^2*Z^2+84*X*Y*Z^3+15*X^2*Y*Z+177*X*Y^2*Z+27*X*Y*Z^2+45*X*Y*Z

Algorithm definition

The algorithm ⟨15×16×20:2888⟩ is the (Kronecker) tensor product of ⟨3×4×4:38⟩ with ⟨5×4×5:76⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table