Description of fast matrix multiplication algorithm: ⟨15×15×32:4180⟩

Algorithm type

16X6Y6Z6+64X2Y12Z3+64X2Y3Z12+368X4Y6Z6+96XY12Z3+96XY3Z12+24X3Y6Z6+3X6Y4Z4+552X2Y6Z6+128X4Y3Z6+208X6Y3Z3+69X4Y4Z4+12X2Y8Z2+12X2Y2Z8+256X2Y3Z6+45X6Y2Z2+64X4Y3Z3+24X4Y2Z4+96XY3Z6+312X3Y3Z3+78X6YZ+150X4Y2Z2+336X2Y3Z3+12X2Y2Z4+48X4YZ2+6X3Y2Z2+24X2Y4Z+24X2YZ4+360XY3Z3+24X4YZ+183X2Y2Z2+24XY4Z+24XYZ4+78X3YZ+72X2YZ2+114X2YZ+24XYZ2+90XYZ16X6Y6Z664X2Y12Z364X2Y3Z12368X4Y6Z696XY12Z396XY3Z1224X3Y6Z63X6Y4Z4552X2Y6Z6128X4Y3Z6208X6Y3Z369X4Y4Z412X2Y8Z212X2Y2Z8256X2Y3Z645X6Y2Z264X4Y3Z324X4Y2Z496XY3Z6312X3Y3Z378X6YZ150X4Y2Z2336X2Y3Z312X2Y2Z448X4YZ26X3Y2Z224X2Y4Z24X2YZ4360XY3Z324X4YZ183X2Y2Z224XY4Z24XYZ478X3YZ72X2YZ2114X2YZ24XYZ290XYZ16*X^6*Y^6*Z^6+64*X^2*Y^12*Z^3+64*X^2*Y^3*Z^12+368*X^4*Y^6*Z^6+96*X*Y^12*Z^3+96*X*Y^3*Z^12+24*X^3*Y^6*Z^6+3*X^6*Y^4*Z^4+552*X^2*Y^6*Z^6+128*X^4*Y^3*Z^6+208*X^6*Y^3*Z^3+69*X^4*Y^4*Z^4+12*X^2*Y^8*Z^2+12*X^2*Y^2*Z^8+256*X^2*Y^3*Z^6+45*X^6*Y^2*Z^2+64*X^4*Y^3*Z^3+24*X^4*Y^2*Z^4+96*X*Y^3*Z^6+312*X^3*Y^3*Z^3+78*X^6*Y*Z+150*X^4*Y^2*Z^2+336*X^2*Y^3*Z^3+12*X^2*Y^2*Z^4+48*X^4*Y*Z^2+6*X^3*Y^2*Z^2+24*X^2*Y^4*Z+24*X^2*Y*Z^4+360*X*Y^3*Z^3+24*X^4*Y*Z+183*X^2*Y^2*Z^2+24*X*Y^4*Z+24*X*Y*Z^4+78*X^3*Y*Z+72*X^2*Y*Z^2+114*X^2*Y*Z+24*X*Y*Z^2+90*X*Y*Z

Algorithm definition

The algorithm ⟨15×15×32:4180⟩ is the (Kronecker) tensor product of ⟨3×3×8:55⟩ with ⟨5×5×4:76⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table