Description of fast matrix multiplication algorithm: ⟨15×15×24:3040⟩

Algorithm type

16X6Y6Z6+64X2Y12Z3+64X2Y3Z12+368X4Y6Z6+96XY12Z3+96XY3Z12+24X3Y6Z6+552X2Y6Z6+128X4Y3Z6+208X6Y3Z3+256X2Y3Z6+64X4Y3Z3+96XY3Z6+312X3Y3Z3+336X2Y3Z3+360XY3Z316X6Y6Z664X2Y12Z364X2Y3Z12368X4Y6Z696XY12Z396XY3Z1224X3Y6Z6552X2Y6Z6128X4Y3Z6208X6Y3Z3256X2Y3Z664X4Y3Z396XY3Z6312X3Y3Z3336X2Y3Z3360XY3Z316*X^6*Y^6*Z^6+64*X^2*Y^12*Z^3+64*X^2*Y^3*Z^12+368*X^4*Y^6*Z^6+96*X*Y^12*Z^3+96*X*Y^3*Z^12+24*X^3*Y^6*Z^6+552*X^2*Y^6*Z^6+128*X^4*Y^3*Z^6+208*X^6*Y^3*Z^3+256*X^2*Y^3*Z^6+64*X^4*Y^3*Z^3+96*X*Y^3*Z^6+312*X^3*Y^3*Z^3+336*X^2*Y^3*Z^3+360*X*Y^3*Z^3

Algorithm definition

The algorithm ⟨15×15×24:3040⟩ is the (Kronecker) tensor product of ⟨3×3×6:40⟩ with ⟨5×5×4:76⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table