Description of fast matrix multiplication algorithm: ⟨14×22×22:4039⟩

Algorithm type

X14Y16Z14+2X12Y12Z14+2X8Y14Z8+X6Y14Z8+X6Y14Z6+4X8Y8Z8+2X6Y12Z6+4X8Y8Z6+2X8Y6Z8+6X7Y8Z7+X6Y8Z8+2X8Y6Z6+2X8Y4Z8+3X6Y8Z6+3X6Y6Z8+2X4Y8Z8+12X6Y6Z7+X6Y6Z6+12X4Y8Z4+32X4Y6Z6+12X4Y7Z4+4X4Y8Z2+13X4Y6Z4+6X3Y7Z4+5X2Y8Z4+48X2Y6Z6+6X3Y7Z3+4X8Y2Z2+3X6Y4Z2+4X6Y2Z4+2X4Y6Z2+166X4Y4Z4+4X4Y2Z6+12X3Y6Z3+5X2Y8Z2+2X2Y6Z4+3X2Y4Z6+4X2Y2Z8+24X4Y4Z3+12X4Y3Z4+6X3Y4Z4+11X6Y2Z2+10X4Y4Z2+12X4Y3Z3+24X4Y2Z4+18X3Y4Z3+18X3Y3Z4+25X2Y6Z2+30X2Y4Z4+11X2Y2Z6+6X3Y3Z3+29X4Y2Z2+125X2Y4Z2+192X2Y3Z3+33X2Y2Z4+24X2Y4Z+78X2Y3Z2+30XY4Z2+288XY3Z3+24X4YZ+18X3Y2Z+24X3YZ2+12X2Y3Z+907X2Y2Z2+24X2YZ3+30XY4Z+12XY3Z2+18XY2Z3+24XYZ4+66X3YZ+60X2Y2Z+72X2YZ2+150XY3Z+108XY2Z2+66XYZ3+174X2YZ+318XY2Z+198XYZ2+330XYZX14Y16Z142X12Y12Z142X8Y14Z8X6Y14Z8X6Y14Z64X8Y8Z82X6Y12Z64X8Y8Z62X8Y6Z86X7Y8Z7X6Y8Z82X8Y6Z62X8Y4Z83X6Y8Z63X6Y6Z82X4Y8Z812X6Y6Z7X6Y6Z612X4Y8Z432X4Y6Z612X4Y7Z44X4Y8Z213X4Y6Z46X3Y7Z45X2Y8Z448X2Y6Z66X3Y7Z34X8Y2Z23X6Y4Z24X6Y2Z42X4Y6Z2166X4Y4Z44X4Y2Z612X3Y6Z35X2Y8Z22X2Y6Z43X2Y4Z64X2Y2Z824X4Y4Z312X4Y3Z46X3Y4Z411X6Y2Z210X4Y4Z212X4Y3Z324X4Y2Z418X3Y4Z318X3Y3Z425X2Y6Z230X2Y4Z411X2Y2Z66X3Y3Z329X4Y2Z2125X2Y4Z2192X2Y3Z333X2Y2Z424X2Y4Z78X2Y3Z230XY4Z2288XY3Z324X4YZ18X3Y2Z24X3YZ212X2Y3Z907X2Y2Z224X2YZ330XY4Z12XY3Z218XY2Z324XYZ466X3YZ60X2Y2Z72X2YZ2150XY3Z108XY2Z266XYZ3174X2YZ318XY2Z198XYZ2330XYZX^14*Y^16*Z^14+2*X^12*Y^12*Z^14+2*X^8*Y^14*Z^8+X^6*Y^14*Z^8+X^6*Y^14*Z^6+4*X^8*Y^8*Z^8+2*X^6*Y^12*Z^6+4*X^8*Y^8*Z^6+2*X^8*Y^6*Z^8+6*X^7*Y^8*Z^7+X^6*Y^8*Z^8+2*X^8*Y^6*Z^6+2*X^8*Y^4*Z^8+3*X^6*Y^8*Z^6+3*X^6*Y^6*Z^8+2*X^4*Y^8*Z^8+12*X^6*Y^6*Z^7+X^6*Y^6*Z^6+12*X^4*Y^8*Z^4+32*X^4*Y^6*Z^6+12*X^4*Y^7*Z^4+4*X^4*Y^8*Z^2+13*X^4*Y^6*Z^4+6*X^3*Y^7*Z^4+5*X^2*Y^8*Z^4+48*X^2*Y^6*Z^6+6*X^3*Y^7*Z^3+4*X^8*Y^2*Z^2+3*X^6*Y^4*Z^2+4*X^6*Y^2*Z^4+2*X^4*Y^6*Z^2+166*X^4*Y^4*Z^4+4*X^4*Y^2*Z^6+12*X^3*Y^6*Z^3+5*X^2*Y^8*Z^2+2*X^2*Y^6*Z^4+3*X^2*Y^4*Z^6+4*X^2*Y^2*Z^8+24*X^4*Y^4*Z^3+12*X^4*Y^3*Z^4+6*X^3*Y^4*Z^4+11*X^6*Y^2*Z^2+10*X^4*Y^4*Z^2+12*X^4*Y^3*Z^3+24*X^4*Y^2*Z^4+18*X^3*Y^4*Z^3+18*X^3*Y^3*Z^4+25*X^2*Y^6*Z^2+30*X^2*Y^4*Z^4+11*X^2*Y^2*Z^6+6*X^3*Y^3*Z^3+29*X^4*Y^2*Z^2+125*X^2*Y^4*Z^2+192*X^2*Y^3*Z^3+33*X^2*Y^2*Z^4+24*X^2*Y^4*Z+78*X^2*Y^3*Z^2+30*X*Y^4*Z^2+288*X*Y^3*Z^3+24*X^4*Y*Z+18*X^3*Y^2*Z+24*X^3*Y*Z^2+12*X^2*Y^3*Z+907*X^2*Y^2*Z^2+24*X^2*Y*Z^3+30*X*Y^4*Z+12*X*Y^3*Z^2+18*X*Y^2*Z^3+24*X*Y*Z^4+66*X^3*Y*Z+60*X^2*Y^2*Z+72*X^2*Y*Z^2+150*X*Y^3*Z+108*X*Y^2*Z^2+66*X*Y*Z^3+174*X^2*Y*Z+318*X*Y^2*Z+198*X*Y*Z^2+330*X*Y*Z

Algorithm definition

The algorithm ⟨14×22×22:4039⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨7×11×11:577⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table