Description of fast matrix multiplication algorithm: ⟨14×22×22:4067⟩

Algorithm type

X14Y14Z12+X12Y14Z14+X12Y12Z12+X8Y16Z8+X8Y14Z6+X6Y14Z8+8X8Y8Z8+3X6Y12Z6+X8Y8Z6+2X8Y6Z8+X6Y8Z8+2X8Y8Z4+3X8Y6Z6+X8Y4Z8+6X7Y7Z6+3X6Y8Z6+6X6Y7Z7+3X6Y6Z8+2X4Y8Z8+6X6Y6Z6+16X6Y6Z4+X6Y4Z6+24X4Y8Z4+48X4Y6Z6+24X6Y6Z2+5X4Y8Z2+6X4Y7Z3+8X4Y6Z4+6X3Y7Z4+5X2Y8Z4+72X2Y6Z6+8X8Y2Z2+2X4Y6Z2+155X4Y4Z4+18X3Y6Z3+X2Y8Z2+2X2Y6Z4+8X2Y2Z8+6X4Y4Z3+12X4Y3Z4+6X3Y4Z4+15X4Y4Z2+18X4Y3Z3+12X4Y2Z4+18X3Y4Z3+18X3Y3Z4+26X2Y6Z2+31X2Y4Z4+12X4Y2Z2+96X3Y3Z2+6X3Y2Z3+153X2Y4Z2+288X2Y3Z3+20X2Y2Z4+144X3Y3Z+30X2Y4Z+48X2Y3Z2+30XY4Z2+432XY3Z3+48X4YZ+12X2Y3Z+732X2Y2Z2+6XY4Z+12XY3Z2+48XYZ4+18X2Y2Z+36X2YZ2+156XY3Z+114XY2Z2+72X2YZ+270XY2Z+120XYZ2+540XYZX14Y14Z12X12Y14Z14X12Y12Z12X8Y16Z8X8Y14Z6X6Y14Z88X8Y8Z83X6Y12Z6X8Y8Z62X8Y6Z8X6Y8Z82X8Y8Z43X8Y6Z6X8Y4Z86X7Y7Z63X6Y8Z66X6Y7Z73X6Y6Z82X4Y8Z86X6Y6Z616X6Y6Z4X6Y4Z624X4Y8Z448X4Y6Z624X6Y6Z25X4Y8Z26X4Y7Z38X4Y6Z46X3Y7Z45X2Y8Z472X2Y6Z68X8Y2Z22X4Y6Z2155X4Y4Z418X3Y6Z3X2Y8Z22X2Y6Z48X2Y2Z86X4Y4Z312X4Y3Z46X3Y4Z415X4Y4Z218X4Y3Z312X4Y2Z418X3Y4Z318X3Y3Z426X2Y6Z231X2Y4Z412X4Y2Z296X3Y3Z26X3Y2Z3153X2Y4Z2288X2Y3Z320X2Y2Z4144X3Y3Z30X2Y4Z48X2Y3Z230XY4Z2432XY3Z348X4YZ12X2Y3Z732X2Y2Z26XY4Z12XY3Z248XYZ418X2Y2Z36X2YZ2156XY3Z114XY2Z272X2YZ270XY2Z120XYZ2540XYZX^14*Y^14*Z^12+X^12*Y^14*Z^14+X^12*Y^12*Z^12+X^8*Y^16*Z^8+X^8*Y^14*Z^6+X^6*Y^14*Z^8+8*X^8*Y^8*Z^8+3*X^6*Y^12*Z^6+X^8*Y^8*Z^6+2*X^8*Y^6*Z^8+X^6*Y^8*Z^8+2*X^8*Y^8*Z^4+3*X^8*Y^6*Z^6+X^8*Y^4*Z^8+6*X^7*Y^7*Z^6+3*X^6*Y^8*Z^6+6*X^6*Y^7*Z^7+3*X^6*Y^6*Z^8+2*X^4*Y^8*Z^8+6*X^6*Y^6*Z^6+16*X^6*Y^6*Z^4+X^6*Y^4*Z^6+24*X^4*Y^8*Z^4+48*X^4*Y^6*Z^6+24*X^6*Y^6*Z^2+5*X^4*Y^8*Z^2+6*X^4*Y^7*Z^3+8*X^4*Y^6*Z^4+6*X^3*Y^7*Z^4+5*X^2*Y^8*Z^4+72*X^2*Y^6*Z^6+8*X^8*Y^2*Z^2+2*X^4*Y^6*Z^2+155*X^4*Y^4*Z^4+18*X^3*Y^6*Z^3+X^2*Y^8*Z^2+2*X^2*Y^6*Z^4+8*X^2*Y^2*Z^8+6*X^4*Y^4*Z^3+12*X^4*Y^3*Z^4+6*X^3*Y^4*Z^4+15*X^4*Y^4*Z^2+18*X^4*Y^3*Z^3+12*X^4*Y^2*Z^4+18*X^3*Y^4*Z^3+18*X^3*Y^3*Z^4+26*X^2*Y^6*Z^2+31*X^2*Y^4*Z^4+12*X^4*Y^2*Z^2+96*X^3*Y^3*Z^2+6*X^3*Y^2*Z^3+153*X^2*Y^4*Z^2+288*X^2*Y^3*Z^3+20*X^2*Y^2*Z^4+144*X^3*Y^3*Z+30*X^2*Y^4*Z+48*X^2*Y^3*Z^2+30*X*Y^4*Z^2+432*X*Y^3*Z^3+48*X^4*Y*Z+12*X^2*Y^3*Z+732*X^2*Y^2*Z^2+6*X*Y^4*Z+12*X*Y^3*Z^2+48*X*Y*Z^4+18*X^2*Y^2*Z+36*X^2*Y*Z^2+156*X*Y^3*Z+114*X*Y^2*Z^2+72*X^2*Y*Z+270*X*Y^2*Z+120*X*Y*Z^2+540*X*Y*Z

Algorithm definition

The algorithm ⟨14×22×22:4067⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨7×11×11:581⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table