Description of fast matrix multiplication algorithm: ⟨14×20×25:4064⟩

Algorithm type

8X4Y12Z4+376X4Y8Z4+32X2Y12Z2+8X2Y8Z4+24XY12Z+448X2Y8Z2+8X2Y4Z6+8XY8Z2+160X4Y4Z2+152X2Y4Z4+72XY8Z+208X2Y4Z2+8XY4Z3+160X2Y4Z+16X2Y3Z2+152XY4Z2+752X2Y2Z2+208XY4Z+48XY3Z+16XY2Z2+16XYZ3+320X2YZ+144XY2Z+304XYZ2+416XYZ8X4Y12Z4376X4Y8Z432X2Y12Z28X2Y8Z424XY12Z448X2Y8Z28X2Y4Z68XY8Z2160X4Y4Z2152X2Y4Z472XY8Z208X2Y4Z28XY4Z3160X2Y4Z16X2Y3Z2152XY4Z2752X2Y2Z2208XY4Z48XY3Z16XY2Z216XYZ3320X2YZ144XY2Z304XYZ2416XYZ8*X^4*Y^12*Z^4+376*X^4*Y^8*Z^4+32*X^2*Y^12*Z^2+8*X^2*Y^8*Z^4+24*X*Y^12*Z+448*X^2*Y^8*Z^2+8*X^2*Y^4*Z^6+8*X*Y^8*Z^2+160*X^4*Y^4*Z^2+152*X^2*Y^4*Z^4+72*X*Y^8*Z+208*X^2*Y^4*Z^2+8*X*Y^4*Z^3+160*X^2*Y^4*Z+16*X^2*Y^3*Z^2+152*X*Y^4*Z^2+752*X^2*Y^2*Z^2+208*X*Y^4*Z+48*X*Y^3*Z+16*X*Y^2*Z^2+16*X*Y*Z^3+320*X^2*Y*Z+144*X*Y^2*Z+304*X*Y*Z^2+416*X*Y*Z

Algorithm definition

The algorithm ⟨14×20×25:4064⟩ is the (Kronecker) tensor product of ⟨2×4×5:32⟩ with ⟨7×5×5:127⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table