Description of fast matrix multiplication algorithm: ⟨14×20×22:3682⟩

Algorithm type

12X8Y8Z8+4X8Y8Z6+3X6Y8Z8+X12Y4Z4+2X8Y4Z8+10X6Y8Z6+X4Y12Z4+X4Y8Z8+2X8Y8Z2+X6Y8Z4+3X8Y4Z4+11X4Y8Z4+7X4Y4Z8+X8Y4Z2+2X6Y4Z4+X4Y8Z2+6X4Y6Z4+6X4Y4Z6+4X2Y8Z4+X2Y4Z8+8X8Y2Z2+2X6Y4Z2+4X6Y2Z4+211X4Y4Z4+4X4Y2Z6+6X2Y8Z2+7X2Y4Z6+8X2Y2Z8+24X4Y4Z3+18X3Y4Z4+24X6Y2Z2+14X4Y4Z2+14X4Y2Z4+60X3Y4Z3+44X2Y6Z2+29X2Y4Z4+13X2Y2Z6+12X4Y4Z+6X3Y4Z2+42X4Y2Z2+119X2Y4Z2+65X2Y2Z4+6X4Y2Z+12X3Y2Z2+6X2Y4Z+36X2Y3Z2+36X2Y2Z3+24XY4Z2+6XY2Z4+48X4YZ+12X3Y2Z+24X3YZ2+895X2Y2Z2+24X2YZ3+36XY4Z+42XY2Z3+48XYZ4+108X3YZ+84X2Y2Z+12X2YZ2+228XY3Z+138XY2Z2+78XYZ3+144X2YZ+318XY2Z+138XYZ2+366XYZ12X8Y8Z84X8Y8Z63X6Y8Z8X12Y4Z42X8Y4Z810X6Y8Z6X4Y12Z4X4Y8Z82X8Y8Z2X6Y8Z43X8Y4Z411X4Y8Z47X4Y4Z8X8Y4Z22X6Y4Z4X4Y8Z26X4Y6Z46X4Y4Z64X2Y8Z4X2Y4Z88X8Y2Z22X6Y4Z24X6Y2Z4211X4Y4Z44X4Y2Z66X2Y8Z27X2Y4Z68X2Y2Z824X4Y4Z318X3Y4Z424X6Y2Z214X4Y4Z214X4Y2Z460X3Y4Z344X2Y6Z229X2Y4Z413X2Y2Z612X4Y4Z6X3Y4Z242X4Y2Z2119X2Y4Z265X2Y2Z46X4Y2Z12X3Y2Z26X2Y4Z36X2Y3Z236X2Y2Z324XY4Z26XY2Z448X4YZ12X3Y2Z24X3YZ2895X2Y2Z224X2YZ336XY4Z42XY2Z348XYZ4108X3YZ84X2Y2Z12X2YZ2228XY3Z138XY2Z278XYZ3144X2YZ318XY2Z138XYZ2366XYZ12*X^8*Y^8*Z^8+4*X^8*Y^8*Z^6+3*X^6*Y^8*Z^8+X^12*Y^4*Z^4+2*X^8*Y^4*Z^8+10*X^6*Y^8*Z^6+X^4*Y^12*Z^4+X^4*Y^8*Z^8+2*X^8*Y^8*Z^2+X^6*Y^8*Z^4+3*X^8*Y^4*Z^4+11*X^4*Y^8*Z^4+7*X^4*Y^4*Z^8+X^8*Y^4*Z^2+2*X^6*Y^4*Z^4+X^4*Y^8*Z^2+6*X^4*Y^6*Z^4+6*X^4*Y^4*Z^6+4*X^2*Y^8*Z^4+X^2*Y^4*Z^8+8*X^8*Y^2*Z^2+2*X^6*Y^4*Z^2+4*X^6*Y^2*Z^4+211*X^4*Y^4*Z^4+4*X^4*Y^2*Z^6+6*X^2*Y^8*Z^2+7*X^2*Y^4*Z^6+8*X^2*Y^2*Z^8+24*X^4*Y^4*Z^3+18*X^3*Y^4*Z^4+24*X^6*Y^2*Z^2+14*X^4*Y^4*Z^2+14*X^4*Y^2*Z^4+60*X^3*Y^4*Z^3+44*X^2*Y^6*Z^2+29*X^2*Y^4*Z^4+13*X^2*Y^2*Z^6+12*X^4*Y^4*Z+6*X^3*Y^4*Z^2+42*X^4*Y^2*Z^2+119*X^2*Y^4*Z^2+65*X^2*Y^2*Z^4+6*X^4*Y^2*Z+12*X^3*Y^2*Z^2+6*X^2*Y^4*Z+36*X^2*Y^3*Z^2+36*X^2*Y^2*Z^3+24*X*Y^4*Z^2+6*X*Y^2*Z^4+48*X^4*Y*Z+12*X^3*Y^2*Z+24*X^3*Y*Z^2+895*X^2*Y^2*Z^2+24*X^2*Y*Z^3+36*X*Y^4*Z+42*X*Y^2*Z^3+48*X*Y*Z^4+108*X^3*Y*Z+84*X^2*Y^2*Z+12*X^2*Y*Z^2+228*X*Y^3*Z+138*X*Y^2*Z^2+78*X*Y*Z^3+144*X^2*Y*Z+318*X*Y^2*Z+138*X*Y*Z^2+366*X*Y*Z

Algorithm definition

The algorithm ⟨14×20×22:3682⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨7×10×11:526⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table