Description of fast matrix multiplication algorithm: ⟨14×16×25:3328⟩

Algorithm type

288X4Y8Z4+16X4Y4Z4+352X2Y8Z2+128X4Y4Z2+160X2Y4Z4+64XY8Z+192X2Y4Z2+128X2Y4Z+160XY4Z2+576X2Y2Z2+176XY4Z+32X2YZ2+256X2YZ+128XY2Z+320XYZ2+352XYZ288X4Y8Z416X4Y4Z4352X2Y8Z2128X4Y4Z2160X2Y4Z464XY8Z192X2Y4Z2128X2Y4Z160XY4Z2576X2Y2Z2176XY4Z32X2YZ2256X2YZ128XY2Z320XYZ2352XYZ288*X^4*Y^8*Z^4+16*X^4*Y^4*Z^4+352*X^2*Y^8*Z^2+128*X^4*Y^4*Z^2+160*X^2*Y^4*Z^4+64*X*Y^8*Z+192*X^2*Y^4*Z^2+128*X^2*Y^4*Z+160*X*Y^4*Z^2+576*X^2*Y^2*Z^2+176*X*Y^4*Z+32*X^2*Y*Z^2+256*X^2*Y*Z+128*X*Y^2*Z+320*X*Y*Z^2+352*X*Y*Z

Algorithm definition

The algorithm ⟨14×16×25:3328⟩ is the (Kronecker) tensor product of ⟨2×4×5:32⟩ with ⟨7×4×5:104⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table