Description of fast matrix multiplication algorithm: ⟨14×16×22:2961⟩

Algorithm type

X10Y12Z14+X12Y10Z12+X8Y12Z8+10X8Y8Z8+4X8Y8Z6+2X8Y6Z8+X4Y4Z14+4X6Y6Z8+6X5Y6Z7+3X4Y12Z2+6X6Y5Z6+2X4Y8Z4+12X6Y4Z4+X4Y8Z2+7X4Y6Z4+2X4Y4Z6+2X2Y4Z8+4X6Y4Z2+183X4Y4Z4+4X4Y2Z6+2X2Y4Z6+X2Y2Z8+24X4Y4Z3+12X4Y3Z4+6X2Y2Z7+19X6Y2Z2+4X4Y4Z2+12X4Y2Z4+24X3Y3Z4+9X2Y6Z2+10X2Y4Z4+4X2Y2Z6+18X2Y6Z+23X4Y2Z2+63X2Y4Z2+42X2Y2Z4+72X3Y2Z2+6X2Y4Z+6X2Y3Z2+12X2Y2Z3+12XY2Z4+24X3Y2Z+806X2Y2Z2+24X2YZ3+12XY2Z3+6XYZ4+114X3YZ+24X2Y2Z+72X2YZ2+54XY3Z+60XY2Z2+24XYZ3+138X2YZ+306XY2Z+252XYZ2+408XYZX10Y12Z14X12Y10Z12X8Y12Z810X8Y8Z84X8Y8Z62X8Y6Z8X4Y4Z144X6Y6Z86X5Y6Z73X4Y12Z26X6Y5Z62X4Y8Z412X6Y4Z4X4Y8Z27X4Y6Z42X4Y4Z62X2Y4Z84X6Y4Z2183X4Y4Z44X4Y2Z62X2Y4Z6X2Y2Z824X4Y4Z312X4Y3Z46X2Y2Z719X6Y2Z24X4Y4Z212X4Y2Z424X3Y3Z49X2Y6Z210X2Y4Z44X2Y2Z618X2Y6Z23X4Y2Z263X2Y4Z242X2Y2Z472X3Y2Z26X2Y4Z6X2Y3Z212X2Y2Z312XY2Z424X3Y2Z806X2Y2Z224X2YZ312XY2Z36XYZ4114X3YZ24X2Y2Z72X2YZ254XY3Z60XY2Z224XYZ3138X2YZ306XY2Z252XYZ2408XYZX^10*Y^12*Z^14+X^12*Y^10*Z^12+X^8*Y^12*Z^8+10*X^8*Y^8*Z^8+4*X^8*Y^8*Z^6+2*X^8*Y^6*Z^8+X^4*Y^4*Z^14+4*X^6*Y^6*Z^8+6*X^5*Y^6*Z^7+3*X^4*Y^12*Z^2+6*X^6*Y^5*Z^6+2*X^4*Y^8*Z^4+12*X^6*Y^4*Z^4+X^4*Y^8*Z^2+7*X^4*Y^6*Z^4+2*X^4*Y^4*Z^6+2*X^2*Y^4*Z^8+4*X^6*Y^4*Z^2+183*X^4*Y^4*Z^4+4*X^4*Y^2*Z^6+2*X^2*Y^4*Z^6+X^2*Y^2*Z^8+24*X^4*Y^4*Z^3+12*X^4*Y^3*Z^4+6*X^2*Y^2*Z^7+19*X^6*Y^2*Z^2+4*X^4*Y^4*Z^2+12*X^4*Y^2*Z^4+24*X^3*Y^3*Z^4+9*X^2*Y^6*Z^2+10*X^2*Y^4*Z^4+4*X^2*Y^2*Z^6+18*X^2*Y^6*Z+23*X^4*Y^2*Z^2+63*X^2*Y^4*Z^2+42*X^2*Y^2*Z^4+72*X^3*Y^2*Z^2+6*X^2*Y^4*Z+6*X^2*Y^3*Z^2+12*X^2*Y^2*Z^3+12*X*Y^2*Z^4+24*X^3*Y^2*Z+806*X^2*Y^2*Z^2+24*X^2*Y*Z^3+12*X*Y^2*Z^3+6*X*Y*Z^4+114*X^3*Y*Z+24*X^2*Y^2*Z+72*X^2*Y*Z^2+54*X*Y^3*Z+60*X*Y^2*Z^2+24*X*Y*Z^3+138*X^2*Y*Z+306*X*Y^2*Z+252*X*Y*Z^2+408*X*Y*Z

Algorithm definition

The algorithm ⟨14×16×22:2961⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨7×8×11:423⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table