Description of fast matrix multiplication algorithm: ⟨14×16×21:2835⟩

Algorithm type

6X6Y8Z4+6X6Y6Z4+15X4Y8Z4+2X8Y4Z2+54X6Y4Z4+15X4Y6Z4+6X2Y8Z4+2X8Y3Z2+24X3Y8Z2+18X8Y2Z2+12X6Y4Z2+135X4Y4Z4+60X2Y8Z2+6X2Y6Z4+12X6Y3Z2+36X3Y6Z2+24XY8Z2+108X6Y2Z2+12X4Y4Z2+90X2Y6Z2+54X2Y4Z4+8X4Y4Z+12X4Y3Z2+12X3Y4Z2+36XY6Z2+12X4Y3Z+108X4Y2Z2+48X3Y4Z+40X2Y4Z2+4X4Y2Z+72X3Y3Z+132X3Y2Z2+48X2Y4Z+10X2Y3Z2+12XY4Z2+44X4YZ+24X3Y2Z+72X2Y3Z+420X2Y2Z2+40XY4Z+264X3YZ+24X2Y2Z+60XY3Z+132XY2Z2+264X2YZ+20XY2Z+220XYZ6X6Y8Z46X6Y6Z415X4Y8Z42X8Y4Z254X6Y4Z415X4Y6Z46X2Y8Z42X8Y3Z224X3Y8Z218X8Y2Z212X6Y4Z2135X4Y4Z460X2Y8Z26X2Y6Z412X6Y3Z236X3Y6Z224XY8Z2108X6Y2Z212X4Y4Z290X2Y6Z254X2Y4Z48X4Y4Z12X4Y3Z212X3Y4Z236XY6Z212X4Y3Z108X4Y2Z248X3Y4Z40X2Y4Z24X4Y2Z72X3Y3Z132X3Y2Z248X2Y4Z10X2Y3Z212XY4Z244X4YZ24X3Y2Z72X2Y3Z420X2Y2Z240XY4Z264X3YZ24X2Y2Z60XY3Z132XY2Z2264X2YZ20XY2Z220XYZ6*X^6*Y^8*Z^4+6*X^6*Y^6*Z^4+15*X^4*Y^8*Z^4+2*X^8*Y^4*Z^2+54*X^6*Y^4*Z^4+15*X^4*Y^6*Z^4+6*X^2*Y^8*Z^4+2*X^8*Y^3*Z^2+24*X^3*Y^8*Z^2+18*X^8*Y^2*Z^2+12*X^6*Y^4*Z^2+135*X^4*Y^4*Z^4+60*X^2*Y^8*Z^2+6*X^2*Y^6*Z^4+12*X^6*Y^3*Z^2+36*X^3*Y^6*Z^2+24*X*Y^8*Z^2+108*X^6*Y^2*Z^2+12*X^4*Y^4*Z^2+90*X^2*Y^6*Z^2+54*X^2*Y^4*Z^4+8*X^4*Y^4*Z+12*X^4*Y^3*Z^2+12*X^3*Y^4*Z^2+36*X*Y^6*Z^2+12*X^4*Y^3*Z+108*X^4*Y^2*Z^2+48*X^3*Y^4*Z+40*X^2*Y^4*Z^2+4*X^4*Y^2*Z+72*X^3*Y^3*Z+132*X^3*Y^2*Z^2+48*X^2*Y^4*Z+10*X^2*Y^3*Z^2+12*X*Y^4*Z^2+44*X^4*Y*Z+24*X^3*Y^2*Z+72*X^2*Y^3*Z+420*X^2*Y^2*Z^2+40*X*Y^4*Z+264*X^3*Y*Z+24*X^2*Y^2*Z+60*X*Y^3*Z+132*X*Y^2*Z^2+264*X^2*Y*Z+20*X*Y^2*Z+220*X*Y*Z

Algorithm definition

The algorithm ⟨14×16×21:2835⟩ is the (Kronecker) tensor product of ⟨2×4×7:45⟩ with ⟨7×4×3:63⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table