Description of fast matrix multiplication algorithm: ⟨14×15×16:2016⟩

Algorithm type

48X4Y8Z6+120X4Y8Z4+48X4Y8Z2+16X2Y4Z8+48X2Y8Z3+120X2Y8Z2+96X2Y4Z6+48X2Y8Z+96X2Y4Z4+16XY4Z4+80X2Y4Z2+96XY4Z3+96X2Y2Z3+96XY4Z2+240X2Y2Z2+80XY4Z+32XYZ4+96X2Y2Z+192XYZ3+192XYZ2+160XYZ48X4Y8Z6120X4Y8Z448X4Y8Z216X2Y4Z848X2Y8Z3120X2Y8Z296X2Y4Z648X2Y8Z96X2Y4Z416XY4Z480X2Y4Z296XY4Z396X2Y2Z396XY4Z2240X2Y2Z280XY4Z32XYZ496X2Y2Z192XYZ3192XYZ2160XYZ48*X^4*Y^8*Z^6+120*X^4*Y^8*Z^4+48*X^4*Y^8*Z^2+16*X^2*Y^4*Z^8+48*X^2*Y^8*Z^3+120*X^2*Y^8*Z^2+96*X^2*Y^4*Z^6+48*X^2*Y^8*Z+96*X^2*Y^4*Z^4+16*X*Y^4*Z^4+80*X^2*Y^4*Z^2+96*X*Y^4*Z^3+96*X^2*Y^2*Z^3+96*X*Y^4*Z^2+240*X^2*Y^2*Z^2+80*X*Y^4*Z+32*X*Y*Z^4+96*X^2*Y^2*Z+192*X*Y*Z^3+192*X*Y*Z^2+160*X*Y*Z

Algorithm definition

The algorithm ⟨14×15×16:2016⟩ is the (Kronecker) tensor product of ⟨2×5×4:32⟩ with ⟨7×3×4:63⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table