Description of fast matrix multiplication algorithm: ⟨14×15×15:1905⟩

Algorithm type

3X4Y6Z4+141X4Y4Z4+15X2Y6Z2+3X2Y4Z4+3X2Y2Z6+60X4Y2Z2+309X2Y4Z2+57X2Y2Z4+18XY6Z+6X2Y3Z2+6XY4Z2+360X2Y2Z2+54XY4Z+6XY2Z3+120X2Y2Z+18XY3Z+120XY2Z2+6XYZ3+120X2YZ+210XY2Z+114XYZ2+156XYZ3X4Y6Z4141X4Y4Z415X2Y6Z23X2Y4Z43X2Y2Z660X4Y2Z2309X2Y4Z257X2Y2Z418XY6Z6X2Y3Z26XY4Z2360X2Y2Z254XY4Z6XY2Z3120X2Y2Z18XY3Z120XY2Z26XYZ3120X2YZ210XY2Z114XYZ2156XYZ3*X^4*Y^6*Z^4+141*X^4*Y^4*Z^4+15*X^2*Y^6*Z^2+3*X^2*Y^4*Z^4+3*X^2*Y^2*Z^6+60*X^4*Y^2*Z^2+309*X^2*Y^4*Z^2+57*X^2*Y^2*Z^4+18*X*Y^6*Z+6*X^2*Y^3*Z^2+6*X*Y^4*Z^2+360*X^2*Y^2*Z^2+54*X*Y^4*Z+6*X*Y^2*Z^3+120*X^2*Y^2*Z+18*X*Y^3*Z+120*X*Y^2*Z^2+6*X*Y*Z^3+120*X^2*Y*Z+210*X*Y^2*Z+114*X*Y*Z^2+156*X*Y*Z

Algorithm definition

The algorithm ⟨14×15×15:1905⟩ is the (Kronecker) tensor product of ⟨2×3×3:15⟩ with ⟨7×5×5:127⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table