Description of fast matrix multiplication algorithm: ⟨14×14×16:1953⟩

Algorithm type

X14Y14Z14+3X8Y8Z8+2X8Y8Z6+2X8Y6Z8+2X6Y8Z8+6X7Y7Z7+2X6Y8Z6+2X6Y6Z8+100X4Y4Z4+12X4Y4Z3+12X4Y3Z4+12X3Y4Z4+13X6Y2Z2+7X4Y4Z2+7X4Y2Z4+12X3Y4Z3+12X3Y3Z4+12X2Y6Z2+15X2Y4Z4+12X2Y2Z6+4X4Y2Z2+29X2Y4Z2+29X2Y2Z4+547X2Y2Z2+78X3YZ+42X2Y2Z+42X2YZ2+72XY3Z+90XY2Z2+72XYZ3+24X2YZ+174XY2Z+174XYZ2+330XYZX14Y14Z143X8Y8Z82X8Y8Z62X8Y6Z82X6Y8Z86X7Y7Z72X6Y8Z62X6Y6Z8100X4Y4Z412X4Y4Z312X4Y3Z412X3Y4Z413X6Y2Z27X4Y4Z27X4Y2Z412X3Y4Z312X3Y3Z412X2Y6Z215X2Y4Z412X2Y2Z64X4Y2Z229X2Y4Z229X2Y2Z4547X2Y2Z278X3YZ42X2Y2Z42X2YZ272XY3Z90XY2Z272XYZ324X2YZ174XY2Z174XYZ2330XYZX^14*Y^14*Z^14+3*X^8*Y^8*Z^8+2*X^8*Y^8*Z^6+2*X^8*Y^6*Z^8+2*X^6*Y^8*Z^8+6*X^7*Y^7*Z^7+2*X^6*Y^8*Z^6+2*X^6*Y^6*Z^8+100*X^4*Y^4*Z^4+12*X^4*Y^4*Z^3+12*X^4*Y^3*Z^4+12*X^3*Y^4*Z^4+13*X^6*Y^2*Z^2+7*X^4*Y^4*Z^2+7*X^4*Y^2*Z^4+12*X^3*Y^4*Z^3+12*X^3*Y^3*Z^4+12*X^2*Y^6*Z^2+15*X^2*Y^4*Z^4+12*X^2*Y^2*Z^6+4*X^4*Y^2*Z^2+29*X^2*Y^4*Z^2+29*X^2*Y^2*Z^4+547*X^2*Y^2*Z^2+78*X^3*Y*Z+42*X^2*Y^2*Z+42*X^2*Y*Z^2+72*X*Y^3*Z+90*X*Y^2*Z^2+72*X*Y*Z^3+24*X^2*Y*Z+174*X*Y^2*Z+174*X*Y*Z^2+330*X*Y*Z

Algorithm definition

The algorithm ⟨14×14×16:1953⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨7×7×8:279⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table