Description of fast matrix multiplication algorithm: ⟨12×27×32:5720⟩

Algorithm type

64X6Y12Z9+96X3Y12Z9+12X6Y8Z6+64X2Y12Z3+512X4Y6Z6+96XY12Z3+768X2Y6Z6+24X6Y4Z3+96X4Y4Z4+12X2Y8Z2+24X3Y4Z3+192X4Y2Z2+1024X2Y3Z3+24X2Y4Z+1536XY3Z3+384X2Y2Z2+24XY4Z+384X2YZ+384XYZ64X6Y12Z996X3Y12Z912X6Y8Z664X2Y12Z3512X4Y6Z696XY12Z3768X2Y6Z624X6Y4Z396X4Y4Z412X2Y8Z224X3Y4Z3192X4Y2Z21024X2Y3Z324X2Y4Z1536XY3Z3384X2Y2Z224XY4Z384X2YZ384XYZ64*X^6*Y^12*Z^9+96*X^3*Y^12*Z^9+12*X^6*Y^8*Z^6+64*X^2*Y^12*Z^3+512*X^4*Y^6*Z^6+96*X*Y^12*Z^3+768*X^2*Y^6*Z^6+24*X^6*Y^4*Z^3+96*X^4*Y^4*Z^4+12*X^2*Y^8*Z^2+24*X^3*Y^4*Z^3+192*X^4*Y^2*Z^2+1024*X^2*Y^3*Z^3+24*X^2*Y^4*Z+1536*X*Y^3*Z^3+384*X^2*Y^2*Z^2+24*X*Y^4*Z+384*X^2*Y*Z+384*X*Y*Z

Algorithm definition

The algorithm ⟨12×27×32:5720⟩ is the (Kronecker) tensor product of ⟨3×3×8:55⟩ with ⟨4×9×4:104⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table