Description of fast matrix multiplication algorithm: ⟨12×21×27:3960⟩

Algorithm type

32X6Y8Z6+176X6Y6Z6+32X3Y12Z3+272X6Y4Z6+128X3Y10Z3+264X6Y3Z6+336X6Y2Z6+128X3Y8Z3+192X3Y6Z3+192X3Y5Z3+368X3Y4Z3+216X3Y3Z3+808X3Y2Z3+816X3YZ332X6Y8Z6176X6Y6Z632X3Y12Z3272X6Y4Z6128X3Y10Z3264X6Y3Z6336X6Y2Z6128X3Y8Z3192X3Y6Z3192X3Y5Z3368X3Y4Z3216X3Y3Z3808X3Y2Z3816X3YZ332*X^6*Y^8*Z^6+176*X^6*Y^6*Z^6+32*X^3*Y^12*Z^3+272*X^6*Y^4*Z^6+128*X^3*Y^10*Z^3+264*X^6*Y^3*Z^6+336*X^6*Y^2*Z^6+128*X^3*Y^8*Z^3+192*X^3*Y^6*Z^3+192*X^3*Y^5*Z^3+368*X^3*Y^4*Z^3+216*X^3*Y^3*Z^3+808*X^3*Y^2*Z^3+816*X^3*Y*Z^3

Algorithm definition

The algorithm ⟨12×21×27:3960⟩ is the (Kronecker) tensor product of ⟨2×7×9:99⟩ with ⟨6×3×3:40⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table