Description of fast matrix multiplication algorithm: ⟨12×20×27:3744⟩

Algorithm type

36X6Y8Z6+8X9Y4Z3+24X3Y8Z3+24X6Y4Z3+288X4Y4Z4+36X2Y8Z2+64X6Y2Z2+52X3Y4Z3+24XY8Z+192X4Y2Z2+8X3Y4Z+192X2Y4Z2+24X2Y4Z+992X2Y2Z2+52XY4Z+128X3YZ+384X2YZ+384XY2Z+832XYZ36X6Y8Z68X9Y4Z324X3Y8Z324X6Y4Z3288X4Y4Z436X2Y8Z264X6Y2Z252X3Y4Z324XY8Z192X4Y2Z28X3Y4Z192X2Y4Z224X2Y4Z992X2Y2Z252XY4Z128X3YZ384X2YZ384XY2Z832XYZ36*X^6*Y^8*Z^6+8*X^9*Y^4*Z^3+24*X^3*Y^8*Z^3+24*X^6*Y^4*Z^3+288*X^4*Y^4*Z^4+36*X^2*Y^8*Z^2+64*X^6*Y^2*Z^2+52*X^3*Y^4*Z^3+24*X*Y^8*Z+192*X^4*Y^2*Z^2+8*X^3*Y^4*Z+192*X^2*Y^4*Z^2+24*X^2*Y^4*Z+992*X^2*Y^2*Z^2+52*X*Y^4*Z+128*X^3*Y*Z+384*X^2*Y*Z+384*X*Y^2*Z+832*X*Y*Z

Algorithm definition

The algorithm ⟨12×20×27:3744⟩ is the (Kronecker) tensor product of ⟨4×4×9:104⟩ with ⟨3×5×3:36⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table