Description of fast matrix multiplication algorithm: ⟨12×20×24:3264⟩

Algorithm type

32X4Y6Z4+32X6Y2Z4+288X4Y4Z4+32X4Y2Z6+32X2Y8Z2+48X2Y4Z6+96X6Y2Z2+64X4Y4Z2+80X2Y6Z2+64X2Y2Z6+128X4Y2Z2+128X2Y4Z2+64X2Y3Z2+64X3YZ2+640X2Y2Z2+64X2YZ3+64XY4Z+96XY2Z3+192X3YZ+128X2Y2Z+160XY3Z+128XYZ3+256X2YZ+256XY2Z+128XYZ32X4Y6Z432X6Y2Z4288X4Y4Z432X4Y2Z632X2Y8Z248X2Y4Z696X6Y2Z264X4Y4Z280X2Y6Z264X2Y2Z6128X4Y2Z2128X2Y4Z264X2Y3Z264X3YZ2640X2Y2Z264X2YZ364XY4Z96XY2Z3192X3YZ128X2Y2Z160XY3Z128XYZ3256X2YZ256XY2Z128XYZ32*X^4*Y^6*Z^4+32*X^6*Y^2*Z^4+288*X^4*Y^4*Z^4+32*X^4*Y^2*Z^6+32*X^2*Y^8*Z^2+48*X^2*Y^4*Z^6+96*X^6*Y^2*Z^2+64*X^4*Y^4*Z^2+80*X^2*Y^6*Z^2+64*X^2*Y^2*Z^6+128*X^4*Y^2*Z^2+128*X^2*Y^4*Z^2+64*X^2*Y^3*Z^2+64*X^3*Y*Z^2+640*X^2*Y^2*Z^2+64*X^2*Y*Z^3+64*X*Y^4*Z+96*X*Y^2*Z^3+192*X^3*Y*Z+128*X^2*Y^2*Z+160*X*Y^3*Z+128*X*Y*Z^3+256*X^2*Y*Z+256*X*Y^2*Z+128*X*Y*Z

Algorithm definition

The algorithm ⟨12×20×24:3264⟩ is the (Kronecker) tensor product of ⟨3×5×6:68⟩ with ⟨4×4×4:48⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table