Description of fast matrix multiplication algorithm: ⟨12×18×32:3892⟩

Algorithm type

48X8Y12Z12+72X4Y12Z12+64X4Y12Z6+96X2Y12Z6+14X4Y8Z4+352X4Y6Z6+4X2Y12Z2+4X2Y8Z4+528X2Y6Z6+2X6Y4Z2+14X4Y4Z4+8X2Y8Z2+4X2Y4Z6+384X2Y6Z3+2X6Y2Z2+4X2Y6Z2+12X2Y4Z4+4X2Y2Z6+576XY6Z3+106X2Y4Z2+384X2Y3Z3+8X2Y2Z4+24XY6Z+24XY4Z2+576XY3Z3+12X3Y2Z+98X2Y2Z2+48XY4Z+24XY2Z3+12X3YZ+24XY3Z+72XY2Z2+24XYZ3+132XY2Z+48XYZ2+84XYZ48X8Y12Z1272X4Y12Z1264X4Y12Z696X2Y12Z614X4Y8Z4352X4Y6Z64X2Y12Z24X2Y8Z4528X2Y6Z62X6Y4Z214X4Y4Z48X2Y8Z24X2Y4Z6384X2Y6Z32X6Y2Z24X2Y6Z212X2Y4Z44X2Y2Z6576XY6Z3106X2Y4Z2384X2Y3Z38X2Y2Z424XY6Z24XY4Z2576XY3Z312X3Y2Z98X2Y2Z248XY4Z24XY2Z312X3YZ24XY3Z72XY2Z224XYZ3132XY2Z48XYZ284XYZ48*X^8*Y^12*Z^12+72*X^4*Y^12*Z^12+64*X^4*Y^12*Z^6+96*X^2*Y^12*Z^6+14*X^4*Y^8*Z^4+352*X^4*Y^6*Z^6+4*X^2*Y^12*Z^2+4*X^2*Y^8*Z^4+528*X^2*Y^6*Z^6+2*X^6*Y^4*Z^2+14*X^4*Y^4*Z^4+8*X^2*Y^8*Z^2+4*X^2*Y^4*Z^6+384*X^2*Y^6*Z^3+2*X^6*Y^2*Z^2+4*X^2*Y^6*Z^2+12*X^2*Y^4*Z^4+4*X^2*Y^2*Z^6+576*X*Y^6*Z^3+106*X^2*Y^4*Z^2+384*X^2*Y^3*Z^3+8*X^2*Y^2*Z^4+24*X*Y^6*Z+24*X*Y^4*Z^2+576*X*Y^3*Z^3+12*X^3*Y^2*Z+98*X^2*Y^2*Z^2+48*X*Y^4*Z+24*X*Y^2*Z^3+12*X^3*Y*Z+24*X*Y^3*Z+72*X*Y^2*Z^2+24*X*Y*Z^3+132*X*Y^2*Z+48*X*Y*Z^2+84*X*Y*Z

Algorithm definition

The algorithm ⟨12×18×32:3892⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨6×9×16:556⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table