Description of fast matrix multiplication algorithm: ⟨12×18×30:3705⟩

Algorithm type

48X8Y12Z12+72X4Y12Z12+96X4Y12Z6+144X2Y12Z6+240X4Y6Z6+360X2Y6Z6+63X4Y4Z4+288X2Y6Z3+9X6Y2Z2+18X2Y6Z2+18X2Y4Z4+18X2Y2Z6+432XY6Z3+162X2Y4Z2+288X2Y3Z3+36X2Y2Z4+36XY6Z+36XY4Z2+432XY3Z3+18X3Y2Z+189X2Y2Z2+72XY4Z+36XY2Z3+18X3YZ+36XY3Z+108XY2Z2+36XYZ3+198XY2Z+72XYZ2+126XYZ48X8Y12Z1272X4Y12Z1296X4Y12Z6144X2Y12Z6240X4Y6Z6360X2Y6Z663X4Y4Z4288X2Y6Z39X6Y2Z218X2Y6Z218X2Y4Z418X2Y2Z6432XY6Z3162X2Y4Z2288X2Y3Z336X2Y2Z436XY6Z36XY4Z2432XY3Z318X3Y2Z189X2Y2Z272XY4Z36XY2Z318X3YZ36XY3Z108XY2Z236XYZ3198XY2Z72XYZ2126XYZ48*X^8*Y^12*Z^12+72*X^4*Y^12*Z^12+96*X^4*Y^12*Z^6+144*X^2*Y^12*Z^6+240*X^4*Y^6*Z^6+360*X^2*Y^6*Z^6+63*X^4*Y^4*Z^4+288*X^2*Y^6*Z^3+9*X^6*Y^2*Z^2+18*X^2*Y^6*Z^2+18*X^2*Y^4*Z^4+18*X^2*Y^2*Z^6+432*X*Y^6*Z^3+162*X^2*Y^4*Z^2+288*X^2*Y^3*Z^3+36*X^2*Y^2*Z^4+36*X*Y^6*Z+36*X*Y^4*Z^2+432*X*Y^3*Z^3+18*X^3*Y^2*Z+189*X^2*Y^2*Z^2+72*X*Y^4*Z+36*X*Y^2*Z^3+18*X^3*Y*Z+36*X*Y^3*Z+108*X*Y^2*Z^2+36*X*Y*Z^3+198*X*Y^2*Z+72*X*Y*Z^2+126*X*Y*Z

Algorithm definition

The algorithm ⟨12×18×30:3705⟩ is the (Kronecker) tensor product of ⟨2×3×3:15⟩ with ⟨6×6×10:247⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table