Description of fast matrix multiplication algorithm: ⟨12×18×28:3500⟩

Algorithm type

16X8Y12Z12+32X8Y10Z10+24X4Y12Z12+48X4Y10Z10+32X4Y12Z6+32X4Y10Z6+48X2Y12Z6+48X2Y10Z6+6X4Y8Z4+160X4Y6Z6+192X4Y5Z5+240X2Y6Z6+6X4Y4Z4+288X2Y5Z5+192X2Y6Z3+12X4Y4Z2+192X2Y5Z3+288XY6Z3+288XY5Z3+12X4Y2Z2+48X2Y4Z2+384X2Y3Z3+576XY3Z3+48X2Y2Z2+72X2Y2Z+72X2YZ+72XY2Z+72XYZ16X8Y12Z1232X8Y10Z1024X4Y12Z1248X4Y10Z1032X4Y12Z632X4Y10Z648X2Y12Z648X2Y10Z66X4Y8Z4160X4Y6Z6192X4Y5Z5240X2Y6Z66X4Y4Z4288X2Y5Z5192X2Y6Z312X4Y4Z2192X2Y5Z3288XY6Z3288XY5Z312X4Y2Z248X2Y4Z2384X2Y3Z3576XY3Z348X2Y2Z272X2Y2Z72X2YZ72XY2Z72XYZ16*X^8*Y^12*Z^12+32*X^8*Y^10*Z^10+24*X^4*Y^12*Z^12+48*X^4*Y^10*Z^10+32*X^4*Y^12*Z^6+32*X^4*Y^10*Z^6+48*X^2*Y^12*Z^6+48*X^2*Y^10*Z^6+6*X^4*Y^8*Z^4+160*X^4*Y^6*Z^6+192*X^4*Y^5*Z^5+240*X^2*Y^6*Z^6+6*X^4*Y^4*Z^4+288*X^2*Y^5*Z^5+192*X^2*Y^6*Z^3+12*X^4*Y^4*Z^2+192*X^2*Y^5*Z^3+288*X*Y^6*Z^3+288*X*Y^5*Z^3+12*X^4*Y^2*Z^2+48*X^2*Y^4*Z^2+384*X^2*Y^3*Z^3+576*X*Y^3*Z^3+48*X^2*Y^2*Z^2+72*X^2*Y^2*Z+72*X^2*Y*Z+72*X*Y^2*Z+72*X*Y*Z

Algorithm definition

The algorithm ⟨12×18×28:3500⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨6×9×14:500⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table