Description of fast matrix multiplication algorithm: ⟨12×18×27:3375⟩

Algorithm type

27X8Y8Z8+108X4Y8Z4+54X4Y4Z8+162X4Y4Z4+108X2Y8Z2+216X2Y4Z4+432X2Y4Z2+216X2Y2Z4+216XY4Z2+324X2Y2Z2+216XY4Z+432XY2Z2+432XY2Z+216XYZ2+216XYZ27X8Y8Z8108X4Y8Z454X4Y4Z8162X4Y4Z4108X2Y8Z2216X2Y4Z4432X2Y4Z2216X2Y2Z4216XY4Z2324X2Y2Z2216XY4Z432XY2Z2432XY2Z216XYZ2216XYZ27*X^8*Y^8*Z^8+108*X^4*Y^8*Z^4+54*X^4*Y^4*Z^8+162*X^4*Y^4*Z^4+108*X^2*Y^8*Z^2+216*X^2*Y^4*Z^4+432*X^2*Y^4*Z^2+216*X^2*Y^2*Z^4+216*X*Y^4*Z^2+324*X^2*Y^2*Z^2+216*X*Y^4*Z+432*X*Y^2*Z^2+432*X*Y^2*Z+216*X*Y*Z^2+216*X*Y*Z

Algorithm definition

The algorithm ⟨12×18×27:3375⟩ is the (Kronecker) tensor product of ⟨2×3×3:15⟩ with ⟨6×6×9:225⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table