Description of fast matrix multiplication algorithm: ⟨12×18×27:3320⟩

Algorithm type

400X6Y6Z4+32X9Y3Z2+600X6Y6Z2+16X3Y9Z2+48X9Y3Z+32X6Y3Z4+24X3Y9Z+32X3Y3Z6+112X6Y3Z2+288X3Y6Z2+96X6Y3Z+432X3Y6Z+352X3Y3Z4+48X3Y3Z3+640X3Y3Z2+168X3Y3Z400X6Y6Z432X9Y3Z2600X6Y6Z216X3Y9Z248X9Y3Z32X6Y3Z424X3Y9Z32X3Y3Z6112X6Y3Z2288X3Y6Z296X6Y3Z432X3Y6Z352X3Y3Z448X3Y3Z3640X3Y3Z2168X3Y3Z400*X^6*Y^6*Z^4+32*X^9*Y^3*Z^2+600*X^6*Y^6*Z^2+16*X^3*Y^9*Z^2+48*X^9*Y^3*Z+32*X^6*Y^3*Z^4+24*X^3*Y^9*Z+32*X^3*Y^3*Z^6+112*X^6*Y^3*Z^2+288*X^3*Y^6*Z^2+96*X^6*Y^3*Z+432*X^3*Y^6*Z+352*X^3*Y^3*Z^4+48*X^3*Y^3*Z^3+640*X^3*Y^3*Z^2+168*X^3*Y^3*Z

Algorithm definition

The algorithm ⟨12×18×27:3320⟩ is the (Kronecker) tensor product of ⟨3×6×3:40⟩ with ⟨4×3×9:83⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table