Description of fast matrix multiplication algorithm: ⟨12×18×21:2640⟩

Algorithm type

16X6Y9Z4+32X6Y6Z6+24X6Y9Z2+240X6Y6Z4+48X6Y6Z3+360X6Y6Z2+16X3Y3Z8+64X3Y3Z6+64X3Y6Z2+96X3Y6Z+248X3Y3Z4+96X3Y3Z3+736X3Y3Z2+600X3Y3Z16X6Y9Z432X6Y6Z624X6Y9Z2240X6Y6Z448X6Y6Z3360X6Y6Z216X3Y3Z864X3Y3Z664X3Y6Z296X3Y6Z248X3Y3Z496X3Y3Z3736X3Y3Z2600X3Y3Z16*X^6*Y^9*Z^4+32*X^6*Y^6*Z^6+24*X^6*Y^9*Z^2+240*X^6*Y^6*Z^4+48*X^6*Y^6*Z^3+360*X^6*Y^6*Z^2+16*X^3*Y^3*Z^8+64*X^3*Y^3*Z^6+64*X^3*Y^6*Z^2+96*X^3*Y^6*Z+248*X^3*Y^3*Z^4+96*X^3*Y^3*Z^3+736*X^3*Y^3*Z^2+600*X^3*Y^3*Z

Algorithm definition

The algorithm ⟨12×18×21:2640⟩ is the (Kronecker) tensor product of ⟨3×6×3:40⟩ with ⟨4×3×7:66⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table