Description of fast matrix multiplication algorithm: ⟨12×16×26:3010⟩

Algorithm type

15X8Y8Z8+6X8Y6Z6+6X4Y12Z4+3X4Y4Z12+6X4Y4Z10+22X4Y8Z4+18X4Y4Z8+3X4Y2Z10+4X4Y6Z4+168X4Y4Z4+12X2Y6Z4+6X2Y4Z6+6X4Y4Z2+36X4Y3Z3+48X2Y6Z2+36X2Y4Z4+32X2Y2Z6+36X2Y2Z5+3X4Y2Z2+190X2Y4Z2+150X2Y2Z4+18X2YZ5+24X2Y3Z2+548X2Y2Z2+72XY3Z2+36XY2Z3+36X2Y2Z+72XY3Z+216XY2Z2+84XYZ3+18X2YZ+348XY2Z+252XYZ2+480XYZ15X8Y8Z86X8Y6Z66X4Y12Z43X4Y4Z126X4Y4Z1022X4Y8Z418X4Y4Z83X4Y2Z104X4Y6Z4168X4Y4Z412X2Y6Z46X2Y4Z66X4Y4Z236X4Y3Z348X2Y6Z236X2Y4Z432X2Y2Z636X2Y2Z53X4Y2Z2190X2Y4Z2150X2Y2Z418X2YZ524X2Y3Z2548X2Y2Z272XY3Z236XY2Z336X2Y2Z72XY3Z216XY2Z284XYZ318X2YZ348XY2Z252XYZ2480XYZ15*X^8*Y^8*Z^8+6*X^8*Y^6*Z^6+6*X^4*Y^12*Z^4+3*X^4*Y^4*Z^12+6*X^4*Y^4*Z^10+22*X^4*Y^8*Z^4+18*X^4*Y^4*Z^8+3*X^4*Y^2*Z^10+4*X^4*Y^6*Z^4+168*X^4*Y^4*Z^4+12*X^2*Y^6*Z^4+6*X^2*Y^4*Z^6+6*X^4*Y^4*Z^2+36*X^4*Y^3*Z^3+48*X^2*Y^6*Z^2+36*X^2*Y^4*Z^4+32*X^2*Y^2*Z^6+36*X^2*Y^2*Z^5+3*X^4*Y^2*Z^2+190*X^2*Y^4*Z^2+150*X^2*Y^2*Z^4+18*X^2*Y*Z^5+24*X^2*Y^3*Z^2+548*X^2*Y^2*Z^2+72*X*Y^3*Z^2+36*X*Y^2*Z^3+36*X^2*Y^2*Z+72*X*Y^3*Z+216*X*Y^2*Z^2+84*X*Y*Z^3+18*X^2*Y*Z+348*X*Y^2*Z+252*X*Y*Z^2+480*X*Y*Z

Algorithm definition

The algorithm ⟨12×16×26:3010⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨6×8×13:430⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table