Description of fast matrix multiplication algorithm: ⟨12×16×24:2730⟩

Algorithm type

18X8Y8Z8+6X4Y12Z4+24X4Y8Z4+36X4Y4Z8+174X4Y4Z4+12X2Y6Z4+48X2Y6Z2+48X2Y4Z4+192X2Y4Z2+276X2Y2Z4+456X2Y2Z2+72XY3Z2+72XY3Z+288XY2Z2+288XY2Z+360XYZ2+360XYZ18X8Y8Z86X4Y12Z424X4Y8Z436X4Y4Z8174X4Y4Z412X2Y6Z448X2Y6Z248X2Y4Z4192X2Y4Z2276X2Y2Z4456X2Y2Z272XY3Z272XY3Z288XY2Z2288XY2Z360XYZ2360XYZ18*X^8*Y^8*Z^8+6*X^4*Y^12*Z^4+24*X^4*Y^8*Z^4+36*X^4*Y^4*Z^8+174*X^4*Y^4*Z^4+12*X^2*Y^6*Z^4+48*X^2*Y^6*Z^2+48*X^2*Y^4*Z^4+192*X^2*Y^4*Z^2+276*X^2*Y^2*Z^4+456*X^2*Y^2*Z^2+72*X*Y^3*Z^2+72*X*Y^3*Z+288*X*Y^2*Z^2+288*X*Y^2*Z+360*X*Y*Z^2+360*X*Y*Z

Algorithm definition

The algorithm ⟨12×16×24:2730⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨6×8×12:390⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table