Description of fast matrix multiplication algorithm: ⟨12×16×20:2256⟩

Algorithm type

208X4Y4Z4+48X6Y2Z2+16X4Y4Z2+32X2Y6Z2+32X2Y4Z4+64X2Y2Z6+48X4Y2Z2+128X2Y4Z2+96X2Y2Z4+496X2Y2Z2+96X3YZ+32X2Y2Z+64XY3Z+64XY2Z2+128XYZ3+96X2YZ+256XY2Z+192XYZ2+160XYZ208X4Y4Z448X6Y2Z216X4Y4Z232X2Y6Z232X2Y4Z464X2Y2Z648X4Y2Z2128X2Y4Z296X2Y2Z4496X2Y2Z296X3YZ32X2Y2Z64XY3Z64XY2Z2128XYZ396X2YZ256XY2Z192XYZ2160XYZ208*X^4*Y^4*Z^4+48*X^6*Y^2*Z^2+16*X^4*Y^4*Z^2+32*X^2*Y^6*Z^2+32*X^2*Y^4*Z^4+64*X^2*Y^2*Z^6+48*X^4*Y^2*Z^2+128*X^2*Y^4*Z^2+96*X^2*Y^2*Z^4+496*X^2*Y^2*Z^2+96*X^3*Y*Z+32*X^2*Y^2*Z+64*X*Y^3*Z+64*X*Y^2*Z^2+128*X*Y*Z^3+96*X^2*Y*Z+256*X*Y^2*Z+192*X*Y*Z^2+160*X*Y*Z

Algorithm definition

The algorithm ⟨12×16×20:2256⟩ is the (Kronecker) tensor product of ⟨3×4×5:47⟩ with ⟨4×4×4:48⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table