Description of fast matrix multiplication algorithm: ⟨12×16×18:2072⟩

Algorithm type

12X8Y8Z8+12X4Y12Z4+24X4Y4Z8+136X4Y4Z4+24X2Y6Z4+4X2Y4Z6+8X6Y2Z2+8X4Y4Z2+104X2Y6Z2+16X4Y2Z2+20X2Y4Z2+168X2Y2Z4+432X2Y2Z2+144XY3Z2+24XY2Z3+48X3YZ+48X2Y2Z+192XY3Z+96X2YZ+120XY2Z+144XYZ2+288XYZ12X8Y8Z812X4Y12Z424X4Y4Z8136X4Y4Z424X2Y6Z44X2Y4Z68X6Y2Z28X4Y4Z2104X2Y6Z216X4Y2Z220X2Y4Z2168X2Y2Z4432X2Y2Z2144XY3Z224XY2Z348X3YZ48X2Y2Z192XY3Z96X2YZ120XY2Z144XYZ2288XYZ12*X^8*Y^8*Z^8+12*X^4*Y^12*Z^4+24*X^4*Y^4*Z^8+136*X^4*Y^4*Z^4+24*X^2*Y^6*Z^4+4*X^2*Y^4*Z^6+8*X^6*Y^2*Z^2+8*X^4*Y^4*Z^2+104*X^2*Y^6*Z^2+16*X^4*Y^2*Z^2+20*X^2*Y^4*Z^2+168*X^2*Y^2*Z^4+432*X^2*Y^2*Z^2+144*X*Y^3*Z^2+24*X*Y^2*Z^3+48*X^3*Y*Z+48*X^2*Y^2*Z+192*X*Y^3*Z+96*X^2*Y*Z+120*X*Y^2*Z+144*X*Y*Z^2+288*X*Y*Z

Algorithm definition

The algorithm ⟨12×16×18:2072⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨6×8×9:296⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table