Description of fast matrix multiplication algorithm: ⟨12×15×21:2240⟩

Algorithm type

64X6Y6Z6+160X6Y4Z6+96X6Y3Z6+240X6Y2Z6+80X3Y8Z3+176X3Y6Z3+232X3Y4Z3+264X3Y3Z3+472X3Y2Z3+456X3YZ364X6Y6Z6160X6Y4Z696X6Y3Z6240X6Y2Z680X3Y8Z3176X3Y6Z3232X3Y4Z3264X3Y3Z3472X3Y2Z3456X3YZ364*X^6*Y^6*Z^6+160*X^6*Y^4*Z^6+96*X^6*Y^3*Z^6+240*X^6*Y^2*Z^6+80*X^3*Y^8*Z^3+176*X^3*Y^6*Z^3+232*X^3*Y^4*Z^3+264*X^3*Y^3*Z^3+472*X^3*Y^2*Z^3+456*X^3*Y*Z^3

Algorithm definition

The algorithm ⟨12×15×21:2240⟩ is the (Kronecker) tensor product of ⟨2×5×7:56⟩ with ⟨6×3×3:40⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table