Description of fast matrix multiplication algorithm: ⟨12×15×18:1880⟩

Algorithm type

208X4Y6Z6+64X2Y9Z3+312X2Y6Z6+48X2Y3Z9+32X4Y6Z3+16X4Y3Z6+96XY9Z3+72XY3Z9+32X6Y3Z3+144X2Y6Z3+72X2Y3Z6+128X4Y3Z3+144XY6Z3+72XY3Z6+48X3Y3Z3+272X2Y3Z3+120XY3Z3208X4Y6Z664X2Y9Z3312X2Y6Z648X2Y3Z932X4Y6Z316X4Y3Z696XY9Z372XY3Z932X6Y3Z3144X2Y6Z372X2Y3Z6128X4Y3Z3144XY6Z372XY3Z648X3Y3Z3272X2Y3Z3120XY3Z3208*X^4*Y^6*Z^6+64*X^2*Y^9*Z^3+312*X^2*Y^6*Z^6+48*X^2*Y^3*Z^9+32*X^4*Y^6*Z^3+16*X^4*Y^3*Z^6+96*X*Y^9*Z^3+72*X*Y^3*Z^9+32*X^6*Y^3*Z^3+144*X^2*Y^6*Z^3+72*X^2*Y^3*Z^6+128*X^4*Y^3*Z^3+144*X*Y^6*Z^3+72*X*Y^3*Z^6+48*X^3*Y^3*Z^3+272*X^2*Y^3*Z^3+120*X*Y^3*Z^3

Algorithm definition

The algorithm ⟨12×15×18:1880⟩ is the (Kronecker) tensor product of ⟨3×3×6:40⟩ with ⟨4×5×3:47⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table