Description of fast matrix multiplication algorithm: ⟨12×14×26:2604⟩

Algorithm type

4X8Y10Z8+2X8Y10Z6+8X8Y8Z8+3X8Y6Z8+X6Y8Z8+2X4Y14Z4+3X8Y6Z6+3X8Y4Z8+2X4Y12Z4+2X6Y4Z8+9X4Y10Z4+X8Y2Z6+X4Y10Z2+6X4Y8Z4+48X4Y6Z6+11X4Y6Z4+72X2Y6Z6+24X4Y5Z4+X4Y6Z2+12X4Y5Z3+108X4Y4Z4+2X2Y8Z2+18X4Y3Z4+6X3Y4Z4+12X2Y7Z2+18X4Y3Z3+24X4Y2Z4+24X2Y6Z2+12X3Y2Z4+54X2Y5Z2+X4Y2Z2+6X4YZ3+6X2Y5Z+84X2Y4Z2+288X2Y3Z3+36X2Y2Z4+66X2Y3Z2+432XY3Z3+6X2Y3Z+388X2Y2Z2+12XY4Z+36X2YZ2+72XY3Z+6X2YZ+288XY2Z+216XYZ2+168XYZ4X8Y10Z82X8Y10Z68X8Y8Z83X8Y6Z8X6Y8Z82X4Y14Z43X8Y6Z63X8Y4Z82X4Y12Z42X6Y4Z89X4Y10Z4X8Y2Z6X4Y10Z26X4Y8Z448X4Y6Z611X4Y6Z472X2Y6Z624X4Y5Z4X4Y6Z212X4Y5Z3108X4Y4Z42X2Y8Z218X4Y3Z46X3Y4Z412X2Y7Z218X4Y3Z324X4Y2Z424X2Y6Z212X3Y2Z454X2Y5Z2X4Y2Z26X4YZ36X2Y5Z84X2Y4Z2288X2Y3Z336X2Y2Z466X2Y3Z2432XY3Z36X2Y3Z388X2Y2Z212XY4Z36X2YZ272XY3Z6X2YZ288XY2Z216XYZ2168XYZ4*X^8*Y^10*Z^8+2*X^8*Y^10*Z^6+8*X^8*Y^8*Z^8+3*X^8*Y^6*Z^8+X^6*Y^8*Z^8+2*X^4*Y^14*Z^4+3*X^8*Y^6*Z^6+3*X^8*Y^4*Z^8+2*X^4*Y^12*Z^4+2*X^6*Y^4*Z^8+9*X^4*Y^10*Z^4+X^8*Y^2*Z^6+X^4*Y^10*Z^2+6*X^4*Y^8*Z^4+48*X^4*Y^6*Z^6+11*X^4*Y^6*Z^4+72*X^2*Y^6*Z^6+24*X^4*Y^5*Z^4+X^4*Y^6*Z^2+12*X^4*Y^5*Z^3+108*X^4*Y^4*Z^4+2*X^2*Y^8*Z^2+18*X^4*Y^3*Z^4+6*X^3*Y^4*Z^4+12*X^2*Y^7*Z^2+18*X^4*Y^3*Z^3+24*X^4*Y^2*Z^4+24*X^2*Y^6*Z^2+12*X^3*Y^2*Z^4+54*X^2*Y^5*Z^2+X^4*Y^2*Z^2+6*X^4*Y*Z^3+6*X^2*Y^5*Z+84*X^2*Y^4*Z^2+288*X^2*Y^3*Z^3+36*X^2*Y^2*Z^4+66*X^2*Y^3*Z^2+432*X*Y^3*Z^3+6*X^2*Y^3*Z+388*X^2*Y^2*Z^2+12*X*Y^4*Z+36*X^2*Y*Z^2+72*X*Y^3*Z+6*X^2*Y*Z+288*X*Y^2*Z+216*X*Y*Z^2+168*X*Y*Z

Algorithm definition

The algorithm ⟨12×14×26:2604⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨6×7×13:372⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table