Description of fast matrix multiplication algorithm: ⟨12×14×20:2016⟩

Algorithm type

48X4Y6Z8+120X4Y4Z8+48X4Y2Z8+16X2Y8Z4+48X2Y3Z8+96X2Y6Z4+120X2Y2Z8+48X2YZ8+96X2Y4Z4+16XY4Z4+80X2Y2Z4+96XY3Z4+96X2Y3Z2+96XY2Z4+240X2Y2Z2+32XY4Z+80XYZ4+96X2YZ2+192XY3Z+192XY2Z+160XYZ48X4Y6Z8120X4Y4Z848X4Y2Z816X2Y8Z448X2Y3Z896X2Y6Z4120X2Y2Z848X2YZ896X2Y4Z416XY4Z480X2Y2Z496XY3Z496X2Y3Z296XY2Z4240X2Y2Z232XY4Z80XYZ496X2YZ2192XY3Z192XY2Z160XYZ48*X^4*Y^6*Z^8+120*X^4*Y^4*Z^8+48*X^4*Y^2*Z^8+16*X^2*Y^8*Z^4+48*X^2*Y^3*Z^8+96*X^2*Y^6*Z^4+120*X^2*Y^2*Z^8+48*X^2*Y*Z^8+96*X^2*Y^4*Z^4+16*X*Y^4*Z^4+80*X^2*Y^2*Z^4+96*X*Y^3*Z^4+96*X^2*Y^3*Z^2+96*X*Y^2*Z^4+240*X^2*Y^2*Z^2+32*X*Y^4*Z+80*X*Y*Z^4+96*X^2*Y*Z^2+192*X*Y^3*Z+192*X*Y^2*Z+160*X*Y*Z

Algorithm definition

The algorithm ⟨12×14×20:2016⟩ is the (Kronecker) tensor product of ⟨3×7×4:63⟩ with ⟨4×2×5:32⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table