Description of fast matrix multiplication algorithm: ⟨12×12×20:1729⟩

Algorithm type

16X8Y12Z12+24X4Y12Z12+144X4Y6Z6+216X2Y6Z6+21X4Y4Z4+3X6Y2Z2+6X2Y6Z2+6X2Y4Z4+6X2Y2Z6+12X2Y4Z2+288X2Y3Z3+12X2Y2Z4+432XY3Z3+147X2Y2Z2+18X3YZ+36XY3Z+36XY2Z2+36XYZ3+72XY2Z+72XYZ2+126XYZ16X8Y12Z1224X4Y12Z12144X4Y6Z6216X2Y6Z621X4Y4Z43X6Y2Z26X2Y6Z26X2Y4Z46X2Y2Z612X2Y4Z2288X2Y3Z312X2Y2Z4432XY3Z3147X2Y2Z218X3YZ36XY3Z36XY2Z236XYZ372XY2Z72XYZ2126XYZ16*X^8*Y^12*Z^12+24*X^4*Y^12*Z^12+144*X^4*Y^6*Z^6+216*X^2*Y^6*Z^6+21*X^4*Y^4*Z^4+3*X^6*Y^2*Z^2+6*X^2*Y^6*Z^2+6*X^2*Y^4*Z^4+6*X^2*Y^2*Z^6+12*X^2*Y^4*Z^2+288*X^2*Y^3*Z^3+12*X^2*Y^2*Z^4+432*X*Y^3*Z^3+147*X^2*Y^2*Z^2+18*X^3*Y*Z+36*X*Y^3*Z+36*X*Y^2*Z^2+36*X*Y*Z^3+72*X*Y^2*Z+72*X*Y*Z^2+126*X*Y*Z

Algorithm definition

The algorithm ⟨12×12×20:1729⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨6×6×10:247⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table