Description of fast matrix multiplication algorithm: ⟨12×12×18:1520⟩

Algorithm type

160X4Y6Z6+48X2Y9Z3+240X2Y6Z6+48X2Y3Z9+32X4Y6Z3+32X4Y3Z6+72XY9Z3+72XY3Z9+32X6Y3Z3+64X2Y6Z3+64X2Y3Z6+176X4Y3Z3+24XY6Z3+24XY3Z6+48X3Y3Z3+312X2Y3Z3+72XY3Z3160X4Y6Z648X2Y9Z3240X2Y6Z648X2Y3Z932X4Y6Z332X4Y3Z672XY9Z372XY3Z932X6Y3Z364X2Y6Z364X2Y3Z6176X4Y3Z324XY6Z324XY3Z648X3Y3Z3312X2Y3Z372XY3Z3160*X^4*Y^6*Z^6+48*X^2*Y^9*Z^3+240*X^2*Y^6*Z^6+48*X^2*Y^3*Z^9+32*X^4*Y^6*Z^3+32*X^4*Y^3*Z^6+72*X*Y^9*Z^3+72*X*Y^3*Z^9+32*X^6*Y^3*Z^3+64*X^2*Y^6*Z^3+64*X^2*Y^3*Z^6+176*X^4*Y^3*Z^3+24*X*Y^6*Z^3+24*X*Y^3*Z^6+48*X^3*Y^3*Z^3+312*X^2*Y^3*Z^3+72*X*Y^3*Z^3

Algorithm definition

The algorithm ⟨12×12×18:1520⟩ is the (Kronecker) tensor product of ⟨3×3×6:40⟩ with ⟨4×4×3:38⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table