Description of fast matrix multiplication algorithm: ⟨11×14×15:1471⟩

Algorithm type

54X4Y4Z4+34X4Y4Z3+14X3Y4Z4+5X6Y2Z2+3X4Y2Z4+4X3Y4Z3+10X3Y3Z4+2X2Y2Z6+4XY8Z+4X5Y2Z2+4X3Y3Z3+6X2Y6Z+4X2Y4Z3+3X2Y2Z5+2XY6Z2+4XY2Z6+27X4Y2Z2+2X3Y4Z+211X2Y4Z2+27X2Y2Z4+5XY6Z+7X4Y2Z+10X3Y2Z2+10X2Y4Z+16X2Y3Z2+14X2Y2Z3+14XY4Z2+9X3Y2Z+2X3YZ2+251X2Y2Z2+3X2YZ3+55XY4Z+3XY3Z2+20XY2Z3+3X3YZ+72X2Y2Z+8X2YZ2+6XY3Z+84XY2Z2+5XYZ3+77X2YZ+174XY2Z+78XYZ2+121XYZ54X4Y4Z434X4Y4Z314X3Y4Z45X6Y2Z23X4Y2Z44X3Y4Z310X3Y3Z42X2Y2Z64XY8Z4X5Y2Z24X3Y3Z36X2Y6Z4X2Y4Z33X2Y2Z52XY6Z24XY2Z627X4Y2Z22X3Y4Z211X2Y4Z227X2Y2Z45XY6Z7X4Y2Z10X3Y2Z210X2Y4Z16X2Y3Z214X2Y2Z314XY4Z29X3Y2Z2X3YZ2251X2Y2Z23X2YZ355XY4Z3XY3Z220XY2Z33X3YZ72X2Y2Z8X2YZ26XY3Z84XY2Z25XYZ377X2YZ174XY2Z78XYZ2121XYZ54*X^4*Y^4*Z^4+34*X^4*Y^4*Z^3+14*X^3*Y^4*Z^4+5*X^6*Y^2*Z^2+3*X^4*Y^2*Z^4+4*X^3*Y^4*Z^3+10*X^3*Y^3*Z^4+2*X^2*Y^2*Z^6+4*X*Y^8*Z+4*X^5*Y^2*Z^2+4*X^3*Y^3*Z^3+6*X^2*Y^6*Z+4*X^2*Y^4*Z^3+3*X^2*Y^2*Z^5+2*X*Y^6*Z^2+4*X*Y^2*Z^6+27*X^4*Y^2*Z^2+2*X^3*Y^4*Z+211*X^2*Y^4*Z^2+27*X^2*Y^2*Z^4+5*X*Y^6*Z+7*X^4*Y^2*Z+10*X^3*Y^2*Z^2+10*X^2*Y^4*Z+16*X^2*Y^3*Z^2+14*X^2*Y^2*Z^3+14*X*Y^4*Z^2+9*X^3*Y^2*Z+2*X^3*Y*Z^2+251*X^2*Y^2*Z^2+3*X^2*Y*Z^3+55*X*Y^4*Z+3*X*Y^3*Z^2+20*X*Y^2*Z^3+3*X^3*Y*Z+72*X^2*Y^2*Z+8*X^2*Y*Z^2+6*X*Y^3*Z+84*X*Y^2*Z^2+5*X*Y*Z^3+77*X^2*Y*Z+174*X*Y^2*Z+78*X*Y*Z^2+121*X*Y*Z

Algorithm definition

The algorithm ⟨11×14×15:1471⟩ could be constructed using the following decomposition:

⟨11×14×15:1471⟩ = ⟨6×5×5:110⟩ + ⟨6×5×5:110⟩ + ⟨5×4×5:76⟩ + ⟨5×5×5:93⟩ + ⟨5×5×5:93⟩ + ⟨5×5×5:93⟩ + ⟨6×5×5:110⟩ + ⟨6×5×5:110⟩ + ⟨6×4×5:90⟩ + ⟨6×5×5:110⟩ + ⟨5×5×5:93⟩ + ⟨6×5×5:110⟩ + ⟨5×5×5:93⟩ + ⟨6×4×5:90⟩ + ⟨6×4×5:90⟩.

This decomposition is defined by the following equality:

TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_1_8A_1_9A_1_10A_1_11A_1_12A_1_13A_1_14A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_2_8A_2_9A_2_10A_2_11A_2_12A_2_13A_2_14A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_3_8A_3_9A_3_10A_3_11A_3_12A_3_13A_3_14A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_4_8A_4_9A_4_10A_4_11A_4_12A_4_13A_4_14A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6A_5_7A_5_8A_5_9A_5_10A_5_11A_5_12A_5_13A_5_14A_6_1A_6_2A_6_3A_6_4A_6_5A_6_6A_6_7A_6_8A_6_9A_6_10A_6_11A_6_12A_6_13A_6_14A_7_1A_7_2A_7_3A_7_4A_7_5A_7_6A_7_7A_7_8A_7_9A_7_10A_7_11A_7_12A_7_13A_7_14A_8_1A_8_2A_8_3A_8_4A_8_5A_8_6A_8_7A_8_8A_8_9A_8_10A_8_11A_8_12A_8_13A_8_14A_9_1A_9_2A_9_3A_9_4A_9_5A_9_6A_9_7A_9_8A_9_9A_9_10A_9_11A_9_12A_9_13A_9_14A_10_1A_10_2A_10_3A_10_4A_10_5A_10_6A_10_7A_10_8A_10_9A_10_10A_10_11A_10_12A_10_13A_10_14A_11_1A_11_2A_11_3A_11_4A_11_5A_11_6A_11_7A_11_8A_11_9A_11_10A_11_11A_11_12A_11_13A_11_14B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_1_12B_1_13B_1_14B_1_15B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_2_12B_2_13B_2_14B_2_15B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_3_12B_3_13B_3_14B_3_15B_4_1B_4_2B_4_3B_4_4B_4_5B_4_6B_4_7B_4_8B_4_9B_4_10B_4_11B_4_12B_4_13B_4_14B_4_15B_5_1B_5_2B_5_3B_5_4B_5_5B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_5_12B_5_13B_5_14B_5_15B_6_1B_6_2B_6_3B_6_4B_6_5B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11B_6_12B_6_13B_6_14B_6_15B_7_1B_7_2B_7_3B_7_4B_7_5B_7_6B_7_7B_7_8B_7_9B_7_10B_7_11B_7_12B_7_13B_7_14B_7_15B_8_1B_8_2B_8_3B_8_4B_8_5B_8_6B_8_7B_8_8B_8_9B_8_10B_8_11B_8_12B_8_13B_8_14B_8_15B_9_1B_9_2B_9_3B_9_4B_9_5B_9_6B_9_7B_9_8B_9_9B_9_10B_9_11B_9_12B_9_13B_9_14B_9_15B_10_1B_10_2B_10_3B_10_4B_10_5B_10_6B_10_7B_10_8B_10_9B_10_10B_10_11B_10_12B_10_13B_10_14B_10_15B_11_1B_11_2B_11_3B_11_4B_11_5B_11_6B_11_7B_11_8B_11_9B_11_10B_11_11B_11_12B_11_13B_11_14B_11_15B_12_1B_12_2B_12_3B_12_4B_12_5B_12_6B_12_7B_12_8B_12_9B_12_10B_12_11B_12_12B_12_13B_12_14B_12_15B_13_1B_13_2B_13_3B_13_4B_13_5B_13_6B_13_7B_13_8B_13_9B_13_10B_13_11B_13_12B_13_13B_13_14B_13_15B_14_1B_14_2B_14_3B_14_4B_14_5B_14_6B_14_7B_14_8B_14_9B_14_10B_14_11B_14_12B_14_13B_14_14B_14_15C_1_1C_1_2C_1_3C_1_4C_1_5C_1_6C_1_7C_1_8C_1_9C_1_10C_1_11C_2_1C_2_2C_2_3C_2_4C_2_5C_2_6C_2_7C_2_8C_2_9C_2_10C_2_11C_3_1C_3_2C_3_3C_3_4C_3_5C_3_6C_3_7C_3_8C_3_9C_3_10C_3_11C_4_1C_4_2C_4_3C_4_4C_4_5C_4_6C_4_7C_4_8C_4_9C_4_10C_4_11C_5_1C_5_2C_5_3C_5_4C_5_5C_5_6C_5_7C_5_8C_5_9C_5_10C_5_11C_6_1C_6_2C_6_3C_6_4C_6_5C_6_6C_6_7C_6_8C_6_9C_6_10C_6_11C_7_1C_7_2C_7_3C_7_4C_7_5C_7_6C_7_7C_7_8C_7_9C_7_10C_7_11C_8_1C_8_2C_8_3C_8_4C_8_5C_8_6C_8_7C_8_8C_8_9C_8_10C_8_11C_9_1C_9_2C_9_3C_9_4C_9_5C_9_6C_9_7C_9_8C_9_9C_9_10C_9_11C_10_1C_10_2C_10_3C_10_4C_10_5C_10_6C_10_7C_10_8C_10_9C_10_10C_10_11C_11_1C_11_2C_11_3C_11_4C_11_5C_11_6C_11_7C_11_8C_11_9C_11_10C_11_11C_12_1C_12_2C_12_3C_12_4C_12_5C_12_6C_12_7C_12_8C_12_9C_12_10C_12_11C_13_1C_13_2C_13_3C_13_4C_13_5C_13_6C_13_7C_13_8C_13_9C_13_10C_13_11C_14_1C_14_2C_14_3C_14_4C_14_5C_14_6C_14_7C_14_8C_14_9C_14_10C_14_11C_15_1C_15_2C_15_3C_15_4C_15_5C_15_6C_15_7C_15_8C_15_9C_15_10C_15_11=TraceMulA_6_10A_6_11A_6_12A_6_13A_6_14A_7_10A_7_11A_7_12A_7_13A_7_14A_8_10A_8_11A_8_12A_8_13A_8_14A_9_10A_9_11A_9_12A_9_13A_9_14A_10_10A_10_11A_10_12A_10_13A_10_14A_11_10A_11_11A_11_12A_11_13A_11_14B_10_1+B_10_6B_10_2+B_10_7B_10_3+B_10_8B_10_4+B_10_9B_10_5+B_10_10B_1_1+B_11_1+B_11_6B_1_2+B_11_2+B_11_7B_1_3+B_11_3+B_11_8B_1_4+B_11_4+B_11_9B_1_5+B_11_5+B_11_10B_2_1+B_12_1+B_12_6B_2_2+B_12_2+B_12_7B_2_3+B_12_3+B_12_8B_2_4+B_12_4+B_12_9B_2_5+B_12_5+B_12_10B_3_1+B_13_1+B_13_6B_3_2+B_13_2+B_13_7B_3_3+B_13_3+B_13_8B_3_4+B_13_4+B_13_9B_3_5+B_13_5+B_13_10B_4_1+B_14_1+B_14_6B_4_2+B_14_2+B_14_7B_4_3+B_14_3+B_14_8B_4_4+B_14_4+B_14_9B_4_5+B_14_5+B_14_10C_1_6C_1_1+C_1_7C_1_2+C_1_8C_1_3+C_1_9C_1_4+C_1_10C_1_5+C_1_11C_2_6C_2_1+C_2_7C_2_2+C_2_8C_2_3+C_2_9C_2_4+C_2_10C_2_5+C_2_11C_3_6C_3_1+C_3_7C_3_2+C_3_8C_3_3+C_3_9C_3_4+C_3_10C_3_5+C_3_11C_4_6C_4_1+C_4_7C_4_2+C_4_8C_4_3+C_4_9C_4_4+C_4_10C_4_5+C_4_11C_5_6C_5_1+C_5_7C_5_2+C_5_8C_5_3+C_5_9C_5_4+C_5_10C_5_5+C_5_11+TraceMul-A_6_10-A_6_11-A_6_12-A_6_13-A_6_14-A_7_10A_1_1-A_7_11A_1_2-A_7_12A_1_3-A_7_13A_1_4-A_7_14-A_8_10A_2_1-A_8_11A_2_2-A_8_12A_2_3-A_8_13A_2_4-A_8_14-A_9_10A_3_1-A_9_11A_3_2-A_9_12A_3_3-A_9_13A_3_4-A_9_14-A_10_10A_4_1-A_10_11A_4_2-A_10_12A_4_3-A_10_13A_4_4-A_10_14-A_11_10A_5_1-A_11_11A_5_2-A_11_12A_5_3-A_11_13A_5_4-A_11_14B_10_11B_10_12B_10_13B_10_14B_10_15B_1_1+B_11_11B_1_2+B_11_12B_1_3+B_11_13B_1_4+B_11_14B_1_5+B_11_15B_2_1+B_12_11B_2_2+B_12_12B_2_3+B_12_13B_2_4+B_12_14B_2_5+B_12_15B_3_1+B_13_11B_3_2+B_13_12B_3_3+B_13_13B_3_4+B_13_14B_3_5+B_13_15B_4_1+B_14_11B_4_2+B_14_12B_4_3+B_14_13B_4_4+B_14_14B_4_5+B_14_15-C_11_6C_1_1-C_11_7C_1_2-C_11_8C_1_3-C_11_9C_1_4-C_11_10C_1_5-C_11_11-C_12_6C_2_1-C_12_7C_2_2-C_12_8C_2_3-C_12_9C_2_4-C_12_10C_2_5-C_12_11-C_13_6C_3_1-C_13_7C_3_2-C_13_8C_3_3-C_13_9C_3_4-C_13_10C_3_5-C_13_11-C_14_6C_4_1-C_14_7C_4_2-C_14_8C_4_3-C_14_9C_4_4-C_14_10C_4_5-C_14_11-C_15_6C_5_1-C_15_7C_5_2-C_15_8C_5_3-C_15_9C_5_4-C_15_10C_5_5-C_15_11+TraceMulA_1_1A_1_2A_1_3A_1_4A_2_1A_2_2A_2_3A_2_4A_3_1A_3_2A_3_3A_3_4A_4_1A_4_2A_4_3A_4_4A_5_1A_5_2A_5_3A_5_4B_1_6-B_1_11-B_11_11B_1_7-B_1_12-B_11_12B_1_8-B_1_13-B_11_13B_1_9-B_1_14-B_11_14B_1_10-B_1_15-B_11_15B_2_6-B_2_11-B_12_11B_2_7-B_2_12-B_12_12B_2_8-B_2_13-B_12_13B_2_9-B_2_14-B_12_14B_2_10-B_2_15-B_12_15B_3_6-B_3_11-B_13_11B_3_7-B_3_12-B_13_12B_3_8-B_3_13-B_13_13B_3_9-B_3_14-B_13_14B_3_10-B_3_15-B_13_15B_4_6-B_4_11-B_14_11B_4_7-B_4_12-B_14_12B_4_8-B_4_13-B_14_13B_4_9-B_4_14-B_14_14-B_4_15+B_4_10-B_14_15-C_11_1-C_11_7-C_11_2-C_11_8-C_11_3-C_11_9-C_11_4-C_11_10-C_11_5-C_11_11-C_12_1-C_12_7-C_12_2-C_12_8-C_12_3-C_12_9-C_12_4-C_12_10-C_12_5-C_12_11-C_13_1-C_13_7-C_13_2-C_13_8-C_13_3-C_13_9-C_13_4-C_13_10-C_13_5-C_13_11-C_14_1-C_14_7-C_14_2-C_14_8-C_14_3-C_14_9-C_14_4-C_14_10-C_14_5-C_14_11-C_15_1-C_15_7-C_15_2-C_15_8-C_15_3-C_15_9-C_15_4-C_15_10-C_15_5-C_15_11+TraceMul-A_1_10A_1_1-A_1_11A_1_2-A_1_12A_1_3-A_1_13A_1_4-A_1_14-A_2_10A_2_1-A_2_11A_2_2-A_2_12A_2_3-A_2_13A_2_4-A_2_14-A_3_10A_3_1-A_3_11A_3_2-A_3_12A_3_3-A_3_13A_3_4-A_3_14-A_4_10A_4_1-A_4_11A_4_2-A_4_12A_4_3-A_4_13A_4_4-A_4_14-A_5_10A_5_1-A_5_11A_5_2-A_5_12A_5_3-A_5_13A_5_4-A_5_14B_10_11B_10_12B_10_13B_10_14B_10_15B_11_11B_11_12B_11_13B_11_14B_11_15B_12_11B_12_12B_12_13B_12_14B_12_15B_13_11B_13_12B_13_13B_13_14B_13_15B_14_11B_14_12B_14_13B_14_14B_14_15-C_1_1-C_11_1-C_1_2-C_11_2-C_1_3-C_11_3-C_1_4-C_11_4-C_1_5-C_11_5-C_2_1-C_12_1-C_2_2-C_12_2-C_2_3-C_12_3-C_2_4-C_12_4-C_2_5-C_12_5-C_3_1-C_13_1-C_3_2-C_13_2-C_3_3-C_13_3-C_3_4-C_13_4-C_3_5-C_13_5-C_4_1-C_14_1-C_4_2-C_14_2-C_4_3-C_14_3-C_4_4-C_14_4-C_4_5-C_14_5-C_5_1-C_15_1-C_5_2-C_15_2-C_5_3-C_15_3-C_5_4-C_15_4-C_5_5-C_15_5+TraceMulA_1_10-A_7_10A_1_11-A_7_11A_1_12-A_7_12A_1_13-A_7_13A_1_14-A_7_14A_2_10-A_8_10A_2_11-A_8_11A_2_12-A_8_12A_2_13-A_8_13A_2_14-A_8_14A_3_10-A_9_10A_3_11-A_9_11A_3_12-A_9_12A_3_13-A_9_13A_3_14-A_9_14A_4_10-A_10_10A_4_11-A_10_11A_4_12-A_10_12A_4_13-A_10_13A_4_14-A_10_14A_5_10-A_11_10A_5_11-A_11_11A_5_12-A_11_12A_5_13-A_11_13A_5_14-A_11_14B_5_1+B_10_1-B_10_11B_5_2+B_10_2-B_10_12B_5_3+B_10_3-B_10_13B_5_4+B_10_4-B_10_14B_5_5+B_10_5-B_10_15B_6_1+B_11_1-B_11_11B_6_2+B_11_2-B_11_12B_6_3+B_11_3-B_11_13B_6_4+B_11_4-B_11_14B_6_5+B_11_5-B_11_15B_7_1+B_12_1-B_12_11B_7_2+B_12_2-B_12_12B_7_3+B_12_3-B_12_13B_7_4+B_12_4-B_12_14B_7_5+B_12_5-B_12_15B_8_1+B_13_1-B_13_11B_8_2+B_13_2-B_13_12B_8_3+B_13_3-B_13_13B_8_4+B_13_4-B_13_14B_8_5+B_13_5-B_13_15B_9_1+B_14_1-B_14_11B_9_2+B_14_2-B_14_12B_9_3+B_14_3-B_14_13B_9_4+B_14_4-B_14_14B_9_5+B_14_5-B_14_15C_1_1C_1_2C_1_3C_1_4C_1_5C_2_1C_2_2C_2_3C_2_4C_2_5C_3_1C_3_2C_3_3C_3_4C_3_5C_4_1C_4_2C_4_3C_4_4C_4_5C_5_1C_5_2C_5_3C_5_4C_5_5+TraceMulA_1_5A_1_6A_1_7A_1_8A_1_9A_2_5A_2_6A_2_7A_2_8A_2_9A_3_5A_3_6A_3_7A_3_8A_3_9A_4_5A_4_6A_4_7A_4_8A_4_9A_5_5A_5_6A_5_7A_5_8A_5_9B_5_6+B_10_6-B_5_11B_5_7+B_10_7-B_5_12B_5_8+B_10_8-B_5_13B_5_9+B_10_9-B_5_14B_5_10+B_10_10-B_5_15B_6_6+B_11_6-B_6_11B_6_7+B_11_7-B_6_12B_6_8+B_11_8-B_6_13B_6_9+B_11_9-B_6_14B_6_10+B_11_10-B_6_15B_7_6+B_12_6-B_7_11B_7_7+B_12_7-B_7_12B_7_8+B_12_8-B_7_13B_7_9+B_12_9-B_7_14B_7_10+B_12_10-B_7_15B_8_6+B_13_6-B_8_11B_8_7+B_13_7-B_8_12B_8_8+B_13_8-B_8_13B_8_9+B_13_9-B_8_14B_8_10+B_13_10-B_8_15B_9_6+B_14_6-B_9_11B_9_7+B_14_7-B_9_12B_9_8+B_14_8-B_9_13B_9_9+B_14_9-B_9_14B_9_10+B_14_10-B_9_15C_6_1C_6_2C_6_3C_6_4C_6_5C_7_1C_7_2C_7_3C_7_4C_7_5C_8_1C_8_2C_8_3C_8_4C_8_5C_9_1C_9_2C_9_3C_9_4C_9_5C_10_1C_10_2C_10_3C_10_4C_10_5+TraceMulA_6_10A_6_11A_6_12A_6_13A_6_14-A_1_10+A_1_5+A_7_10A_1_6-A_1_11+A_7_11A_1_7-A_1_12+A_7_12A_1_8-A_1_13+A_7_13A_1_9-A_1_14+A_7_14-A_2_10+A_2_5+A_8_10A_2_6-A_2_11+A_8_11A_2_7-A_2_12+A_8_12A_2_8-A_2_13+A_8_13A_2_9-A_2_14+A_8_14A_3_5-A_3_10+A_9_10A_3_6-A_3_11+A_9_11A_3_7-A_3_12+A_9_12A_3_8-A_3_13+A_9_13A_3_9-A_3_14+A_9_14A_4_5-A_4_10+A_10_10A_4_6-A_4_11+A_10_11A_4_7-A_4_12+A_10_12A_4_8-A_4_13+A_10_13A_4_9-A_4_14+A_10_14A_5_5-A_5_10+A_11_10A_5_6-A_5_11+A_11_11A_5_7-A_5_12+A_11_12A_5_8-A_5_13+A_11_13A_5_9-A_5_14+A_11_14B_5_1-B_10_6B_5_2-B_10_7B_5_3-B_10_8B_5_4-B_10_9B_5_5-B_10_10B_6_1-B_11_6B_6_2-B_11_7B_6_3-B_11_8B_6_4-B_11_9B_6_5-B_11_10B_7_1-B_12_6B_7_2-B_12_7B_7_3-B_12_8B_7_4-B_12_9B_7_5-B_12_10B_8_1-B_13_6B_8_2-B_13_7B_8_3-B_13_8B_8_4-B_13_9B_8_5-B_13_10B_9_1-B_14_6B_9_2-B_14_7B_9_3-B_14_8B_9_4-B_14_9B_9_5-B_14_10C_1_6-C_6_6C_1_1+C_1_7-C_6_7C_1_2+C_1_8-C_6_8C_1_3+C_1_9-C_6_9C_1_4+C_1_10-C_6_10C_1_5+C_1_11-C_6_11C_2_6-C_7_6C_2_1+C_2_7-C_7_7C_2_2+C_2_8-C_7_8C_2_3+C_2_9-C_7_9C_2_4+C_2_10-C_7_10C_2_5+C_2_11-C_7_11C_3_6-C_8_6C_3_1+C_3_7-C_8_7C_3_2+C_3_8-C_8_8C_3_3+C_3_9-C_8_9C_3_4+C_3_10-C_8_10C_3_5+C_3_11-C_8_11C_4_6-C_9_6C_4_1+C_4_7-C_9_7C_4_2+C_4_8-C_9_8C_4_3+C_4_9-C_9_9C_4_4+C_4_10-C_9_10C_4_5+C_4_11-C_9_11C_5_6-C_10_6C_5_1+C_5_7-C_10_7C_5_2+C_5_8-C_10_8C_5_3+C_5_9-C_10_9C_5_4+C_5_10-C_10_10C_5_5+C_5_11-C_10_11+TraceMulA_6_5-A_6_1+A_6_6-A_6_2+A_6_7-A_6_3+A_6_8-A_6_4+A_6_9A_7_5A_1_1-A_7_1+A_7_6A_1_2-A_7_2+A_7_7A_1_3-A_7_3+A_7_8A_1_4-A_7_4+A_7_9A_8_5A_2_1-A_8_1+A_8_6A_2_2-A_8_2+A_8_7A_2_3-A_8_3+A_8_8A_2_4-A_8_4+A_8_9A_9_5A_3_1-A_9_1+A_9_6A_3_2-A_9_2+A_9_7A_3_3-A_9_3+A_9_8A_3_4-A_9_4+A_9_9A_10_5A_4_1-A_10_1+A_10_6A_4_2-A_10_2+A_10_7A_4_3-A_10_3+A_10_8A_4_4-A_10_4+A_10_9A_11_5A_5_1-A_11_1+A_11_6A_5_2-A_11_2+A_11_7A_5_3-A_11_3+A_11_8A_5_4-A_11_4+A_11_9B_5_11B_5_12B_5_13B_5_14B_5_15B_1_6+B_6_11B_1_7+B_6_12B_1_8+B_6_13B_1_9+B_6_14B_1_10+B_6_15B_2_6+B_7_11B_2_7+B_7_12B_2_8+B_7_13B_2_9+B_7_14B_2_10+B_7_15B_3_6+B_8_11B_3_7+B_8_12B_3_8+B_8_13B_3_9+B_8_14B_3_10+B_8_15B_4_6+B_9_11B_4_7+B_9_12B_4_8+B_9_13B_4_9+B_9_14B_4_10+B_9_15C_11_6C_6_1+C_11_1+C_11_7C_6_2+C_11_2+C_11_8C_6_3+C_11_3+C_11_9C_6_4+C_11_4+C_11_10C_6_5+C_11_5+C_11_11C_12_6C_7_1+C_12_1+C_12_7C_7_2+C_12_2+C_12_8C_7_3+C_12_3+C_12_9C_7_4+C_12_4+C_12_10C_7_5+C_12_5+C_12_11C_13_6C_8_1+C_13_1+C_13_7C_8_2+C_13_2+C_13_8C_8_3+C_13_3+C_13_9C_8_4+C_13_4+C_13_10C_8_5+C_13_5+C_13_11C_14_6C_9_1+C_14_1+C_14_7C_9_2+C_14_2+C_14_8C_9_3+C_14_3+C_14_9C_9_4+C_14_4+C_14_10C_9_5+C_14_5+C_14_11C_15_6C_10_1+C_15_1+C_15_7C_10_2+C_15_2+C_15_8C_10_3+C_15_3+C_15_9C_10_4+C_15_4+C_15_10C_10_5+C_15_5+C_15_11+TraceMulA_6_1-A_6_6A_6_2-A_6_7A_6_3-A_6_8A_6_4-A_6_9A_7_1-A_7_6A_7_2-A_7_7A_7_3-A_7_8A_7_4-A_7_9A_8_1-A_8_6A_8_2-A_8_7A_8_3-A_8_8A_8_4-A_8_9A_9_1-A_9_6A_9_2-A_9_7A_9_3-A_9_8A_9_4-A_9_9A_10_1-A_10_6A_10_2-A_10_7A_10_3-A_10_8A_10_4-A_10_9A_11_1-A_11_6-A_11_7+A_11_2A_11_3-A_11_8A_11_4-A_11_9B_1_6B_1_7B_1_8B_1_9B_1_10B_2_6B_2_7B_2_8B_2_9B_2_10B_3_6B_3_7B_3_8B_3_9B_3_10B_4_6B_4_7B_4_8B_4_9B_4_10C_6_6+C_11_6C_6_1+C_11_1+C_6_7+C_11_7C_6_2+C_11_2+C_6_8+C_11_8C_6_3+C_11_3+C_6_9+C_11_9C_6_4+C_11_4+C_6_10+C_11_10C_6_5+C_11_5+C_6_11+C_11_11C_7_6+C_12_6C_7_1+C_12_1+C_7_7+C_12_7C_7_2+C_12_2+C_7_8+C_12_8C_7_3+C_12_3+C_7_9+C_12_9C_7_4+C_12_4+C_7_10+C_12_10C_7_5+C_12_5+C_7_11+C_12_11C_8_6+C_13_6C_8_1+C_13_1+C_8_7+C_13_7C_8_2+C_13_2+C_8_8+C_13_8C_8_3+C_13_3+C_8_9+C_13_9C_8_4+C_13_4+C_8_10+C_13_10C_8_5+C_13_5+C_8_11+C_13_11C_9_6+C_14_6C_9_1+C_14_1+C_9_7+C_14_7C_9_2+C_14_2+C_9_8+C_14_8C_9_3+C_14_3+C_9_9+C_14_9C_9_4+C_14_4+C_9_10+C_14_10C_9_5+C_14_5+C_9_11+C_14_11C_10_6+C_15_6C_10_1+C_15_1+C_10_7+C_15_7C_10_2+C_15_2+C_10_8+C_15_8C_10_3+C_15_3+C_10_9+C_15_9C_10_4+C_15_4+C_10_10+C_15_10C_10_5+C_15_5+C_10_11+C_15_11+TraceMul-A_6_5+A_6_10-A_6_6+A_6_11-A_6_7+A_6_12-A_6_8+A_6_13-A_6_9+A_6_14A_1_5-A_7_5-A_1_10+A_7_10A_1_6-A_7_6-A_1_11+A_7_11A_1_7-A_7_7-A_1_12+A_7_12A_1_8-A_7_8-A_1_13+A_7_13A_1_9-A_7_9-A_1_14+A_7_14A_2_5-A_8_5-A_2_10+A_8_10A_2_6-A_8_6-A_2_11+A_8_11A_2_7-A_8_7-A_2_12+A_8_12A_2_8-A_8_8-A_2_13+A_8_13A_2_9-A_8_9-A_2_14+A_8_14A_3_5-A_9_5-A_3_10+A_9_10A_3_6-A_9_6-A_3_11+A_9_11A_3_7-A_9_7-A_3_12+A_9_12A_3_8-A_9_8-A_3_13+A_9_13A_3_9-A_9_9-A_3_14+A_9_14A_4_5-A_10_5-A_4_10+A_10_10A_4_6-A_10_6-A_4_11+A_10_11A_4_7-A_10_7-A_4_12+A_10_12A_4_8-A_10_8-A_4_13+A_10_13A_4_9-A_10_9-A_4_14+A_10_14A_5_5-A_11_5-A_5_10+A_11_10A_5_6-A_11_6-A_5_11+A_11_11A_5_7-A_11_7-A_5_12+A_11_12A_5_8-A_11_8-A_5_13+A_11_13A_5_9-A_11_9-A_5_14+A_11_14B_5_1B_5_2B_5_3B_5_4B_5_5B_6_1B_6_2B_6_3B_6_4B_6_5B_7_1B_7_2B_7_3B_7_4B_7_5B_8_1B_8_2B_8_3B_8_4B_8_5B_9_1B_9_2B_9_3B_9_4B_9_5-C_1_6+C_6_6-C_1_7+C_6_7-C_1_8+C_6_8-C_1_9+C_6_9-C_1_10+C_6_10-C_1_11+C_6_11-C_2_6+C_7_6-C_2_7+C_7_7-C_2_8+C_7_8-C_2_9+C_7_9-C_2_10+C_7_10-C_2_11+C_7_11-C_3_6+C_8_6-C_3_7+C_8_7-C_3_8+C_8_8-C_3_9+C_8_9-C_3_10+C_8_10-C_3_11+C_8_11-C_4_6+C_9_6-C_4_7+C_9_7-C_4_8+C_9_8-C_4_9+C_9_9-C_4_10+C_9_10-C_4_11+C_9_11-C_5_6+C_10_6-C_5_7+C_10_7-C_5_8+C_10_8-C_5_9+C_10_9-C_5_10+C_10_10-C_5_11+C_10_11+TraceMul-A_1_10+A_1_5A_1_6-A_1_11A_1_7-A_1_12A_1_8-A_1_13A_1_9-A_1_14-A_2_10+A_2_5A_2_6-A_2_11A_2_7-A_2_12A_2_8-A_2_13A_2_9-A_2_14A_3_5-A_3_10A_3_6-A_3_11A_3_7-A_3_12A_3_8-A_3_13A_3_9-A_3_14A_4_5-A_4_10A_4_6-A_4_11A_4_7-A_4_12A_4_8-A_4_13A_4_9-A_4_14A_5_5-A_5_10A_5_6-A_5_11A_5_7-A_5_12A_5_8-A_5_13A_5_9-A_5_14B_10_6B_10_7B_10_8B_10_9B_10_10B_11_6B_11_7B_11_8B_11_9B_11_10B_12_6B_12_7B_12_8B_12_9B_12_10B_13_6B_13_7B_13_8B_13_9B_13_10B_14_6B_14_7B_14_8B_14_9B_14_10C_1_1-C_6_1+C_1_7-C_6_7C_1_2-C_6_2+C_1_8-C_6_8C_1_3-C_6_3+C_1_9-C_6_9C_1_4-C_6_4+C_1_10-C_6_10C_1_5-C_6_5+C_1_11-C_6_11C_2_1-C_7_1+C_2_7-C_7_7C_2_2-C_7_2+C_2_8-C_7_8C_2_3-C_7_3+C_2_9-C_7_9C_2_4-C_7_4+C_2_10-C_7_10C_2_5-C_7_5+C_2_11-C_7_11C_3_1-C_8_1+C_3_7-C_8_7C_3_2-C_8_2+C_3_8-C_8_8C_3_3-C_8_3+C_3_9-C_8_9C_3_4-C_8_4+C_3_10-C_8_10C_3_5-C_8_5+C_3_11-C_8_11-C_9_1+C_4_1+C_4_7-C_9_7-C_9_2+C_4_2+C_4_8-C_9_8-C_9_3+C_4_3+C_4_9-C_9_9C_4_4-C_9_4+C_4_10-C_9_10C_4_5-C_9_5+C_4_11-C_9_11C_5_1-C_10_1+C_5_7-C_10_7C_5_2-C_10_2+C_5_8-C_10_8C_5_3-C_10_3+C_5_9-C_10_9C_5_4-C_10_4+C_5_10-C_10_10C_5_5-C_10_5+C_5_11-C_10_11+TraceMulA_6_5A_6_6A_6_7A_6_8A_6_9A_7_5A_7_6A_7_7A_7_8A_7_9A_8_5A_8_6A_8_7A_8_8A_8_9A_9_5A_9_6A_9_7A_9_8A_9_9A_10_5A_10_6A_10_7A_10_8A_10_9A_11_5A_11_6A_11_7A_11_8A_11_9B_5_1+B_5_6B_5_2+B_5_7B_5_3+B_5_8B_5_4+B_5_9B_5_5+B_5_10B_6_1+B_1_6+B_6_6B_6_2+B_1_7+B_6_7B_6_3+B_1_8+B_6_8B_6_4+B_1_9+B_6_9B_6_5+B_1_10+B_6_10B_7_1+B_2_6+B_7_6B_7_2+B_2_7+B_7_7B_7_3+B_2_8+B_7_8B_7_4+B_2_9+B_7_9B_7_5+B_2_10+B_7_10B_8_1+B_3_6+B_8_6B_8_2+B_3_7+B_8_7B_8_3+B_3_8+B_8_8B_8_4+B_3_9+B_8_9B_8_5+B_3_10+B_8_10B_9_1+B_4_6+B_9_6B_9_2+B_4_7+B_9_7B_9_3+B_4_8+B_9_8B_9_4+B_4_9+B_9_9B_9_5+B_4_10+B_9_10C_6_6C_6_7C_6_8C_6_9C_6_10C_6_11C_7_6C_7_7C_7_8C_7_9C_7_10C_7_11C_8_6C_8_7C_8_8C_8_9C_8_10C_8_11C_9_6C_9_7C_9_8C_9_9C_9_10C_9_11C_10_6C_10_7C_10_8C_10_9C_10_10C_10_11+TraceMul-A_1_5+A_7_5A_1_1-A_7_1-A_1_6+A_7_6A_1_2-A_7_2-A_1_7+A_7_7A_1_3-A_7_3-A_1_8+A_7_8A_1_4-A_7_4-A_1_9+A_7_9-A_2_5+A_8_5A_2_1-A_8_1-A_2_6+A_8_6A_2_2-A_8_2-A_2_7+A_8_7A_2_3-A_8_3-A_2_8+A_8_8A_2_4-A_8_4-A_2_9+A_8_9-A_3_5+A_9_5A_3_1-A_9_1-A_3_6+A_9_6A_3_2-A_9_2-A_3_7+A_9_7A_3_3-A_9_3-A_3_8+A_9_8A_3_4-A_9_4-A_3_9+A_9_9-A_4_5+A_10_5A_4_1-A_10_1-A_4_6+A_10_6A_4_2-A_10_2-A_4_7+A_10_7A_4_3-A_10_3-A_4_8+A_10_8A_4_4-A_10_4-A_4_9+A_10_9-A_5_5+A_11_5A_5_1-A_11_1-A_5_6+A_11_6A_5_2-A_11_2-A_5_7+A_11_7A_5_3-A_11_3-A_5_8+A_11_8A_5_4-A_11_4-A_5_9+A_11_9B_5_11B_5_12B_5_13B_5_14B_5_15B_6_11B_6_12B_6_13B_6_14B_6_15B_7_11B_7_12B_7_13B_7_14B_7_15B_8_11B_8_12B_8_13B_8_14B_8_15B_9_11B_9_12B_9_13B_9_14B_9_15-C_6_1-C_11_1-C_6_2-C_11_2-C_6_3-C_11_3-C_6_4-C_11_4-C_6_5-C_11_5-C_7_1-C_12_1-C_7_2-C_12_2-C_7_3-C_12_3-C_7_4-C_12_4-C_7_5-C_12_5-C_8_1-C_13_1-C_8_2-C_13_2-C_8_3-C_13_3-C_8_4-C_13_4-C_8_5-C_13_5-C_9_1-C_14_1-C_9_2-C_14_2-C_9_3-C_14_3-C_9_4-C_14_4-C_9_5-C_14_5-C_10_1-C_15_1-C_10_2-C_15_2-C_10_3-C_15_3-C_10_4-C_15_4-C_10_5-C_15_5+TraceMulA_6_1-A_6_11A_6_2-A_6_12A_6_3-A_6_13A_6_4-A_6_14A_7_1-A_7_11A_7_2-A_7_12A_7_3-A_7_13A_7_4-A_7_14A_8_1-A_8_11A_8_2-A_8_12A_8_3-A_8_13A_8_4-A_8_14A_9_1-A_9_11A_9_2-A_9_12A_9_3-A_9_13A_9_4-A_9_14A_10_1-A_10_11A_10_2-A_10_12A_10_3-A_10_13A_10_4-A_10_14A_11_1-A_11_11A_11_2-A_11_12A_11_3-A_11_13A_11_4-A_11_14B_1_1B_1_2B_1_3B_1_4B_1_5B_2_1B_2_2B_2_3B_2_4B_2_5B_3_1B_3_2B_3_3B_3_4B_3_5B_4_1B_4_2B_4_3B_4_4B_4_5C_1_6+C_11_6C_1_7+C_11_7C_1_8+C_11_8C_1_9+C_11_9C_1_10+C_11_10C_1_11+C_11_11C_2_6+C_12_6C_2_7+C_12_7C_2_8+C_12_8C_2_9+C_12_9C_2_10+C_12_10C_2_11+C_12_11C_3_6+C_13_6C_3_7+C_13_7C_3_8+C_13_8C_3_9+C_13_9C_3_10+C_13_10C_3_11+C_13_11C_4_6+C_14_6C_4_7+C_14_7C_4_8+C_14_8C_4_9+C_14_9C_4_10+C_14_10C_4_11+C_14_11C_5_6+C_15_6C_5_7+C_15_7C_5_8+C_15_8C_5_9+C_15_9C_5_10+C_15_10C_5_11+C_15_11+TraceMul-A_6_1-A_6_2-A_6_3-A_6_4A_1_1-A_7_1A_1_2-A_7_2A_1_3-A_7_3A_1_4-A_7_4A_2_1-A_8_1A_2_2-A_8_2A_2_3-A_8_3A_2_4-A_8_4A_3_1-A_9_1A_3_2-A_9_2A_3_3-A_9_3A_3_4-A_9_4A_4_1-A_10_1A_4_2-A_10_2A_4_3-A_10_3A_4_4-A_10_4A_5_1-A_11_1A_5_2-A_11_2A_5_3-A_11_3A_5_4-A_11_4B_1_1-B_1_11-B_6_11B_1_2-B_1_12-B_6_12B_1_3-B_1_13-B_6_13B_1_4-B_1_14-B_6_14B_1_5-B_1_15-B_6_15B_2_1-B_2_11-B_7_11B_2_2-B_2_12-B_7_12B_2_3-B_2_13-B_7_13B_2_4-B_2_14-B_7_14B_2_5-B_2_15-B_7_15B_3_1-B_3_11-B_8_11B_3_2-B_3_12-B_8_12B_3_3-B_3_13-B_8_13B_3_4-B_3_14-B_8_14B_3_5-B_3_15-B_8_15B_4_1-B_4_11-B_9_11B_4_2-B_4_12-B_9_12B_4_3-B_4_13-B_9_13B_4_4-B_4_14-B_9_14B_4_5-B_4_15-B_9_15C_11_6C_11_7C_11_8C_11_9C_11_10C_11_11C_12_6C_12_7C_12_8C_12_9C_12_10C_12_11C_13_6C_13_7C_13_8C_13_9C_13_10C_13_11C_14_6C_14_7C_14_8C_14_9C_14_10C_14_11C_15_6C_15_7C_15_8C_15_9C_15_10C_15_11

N.B.: for any matrices A, B and C such that the expression Tr(Mul(A,B,C)) is defined, one can construct several trilinear homogeneous polynomials P(A,B,C) such that P(A,B,C)=Tr(Mul(A,B,C)) (P(A,B,C) variables are A,B and C's coefficients). Each trilinear P expression encodes a matrix multiplication algorithm: the coefficient in C_i_j of P(A,B,C) is the (i,j)-th entry of the matrix product Mul(A,B)=Transpose(C).

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table