Description of fast matrix multiplication algorithm: ⟨11×12×12:990⟩

Algorithm type

48X4Y6Z6+48X4Y6Z5+72X2Y6Z6+72X2Y6Z5+32X6Y3Z3+96X4Y3Z3+48X3Y3Z3+12X4Y2Z2+256X2Y3Z3+168XY3Z3+18X2Y2Z2+24X2Y2Z+24X2YZ+36XY2Z+36XYZ48X4Y6Z648X4Y6Z572X2Y6Z672X2Y6Z532X6Y3Z396X4Y3Z348X3Y3Z312X4Y2Z2256X2Y3Z3168XY3Z318X2Y2Z224X2Y2Z24X2YZ36XY2Z36XYZ48*X^4*Y^6*Z^6+48*X^4*Y^6*Z^5+72*X^2*Y^6*Z^6+72*X^2*Y^6*Z^5+32*X^6*Y^3*Z^3+96*X^4*Y^3*Z^3+48*X^3*Y^3*Z^3+12*X^4*Y^2*Z^2+256*X^2*Y^3*Z^3+168*X*Y^3*Z^3+18*X^2*Y^2*Z^2+24*X^2*Y^2*Z+24*X^2*Y*Z+36*X*Y^2*Z+36*X*Y*Z

Algorithm definition

The algorithm ⟨11×12×12:990⟩ could be constructed using the following decomposition:

⟨11×12×12:990⟩ = ⟨3×3×6:40⟩ + ⟨3×3×6:40⟩ + ⟨3×3×6:40⟩ + ⟨3×3×6:40⟩ + ⟨2×3×6:30⟩ + ⟨3×3×6:40⟩ + ⟨3×3×6:40⟩ + ⟨3×3×6:40⟩ + ⟨3×3×6:40⟩ + ⟨3×3×6:40⟩ + ⟨2×3×6:30⟩ + ⟨3×3×6:40⟩ + ⟨3×3×6:40⟩ + ⟨3×3×6:40⟩ + ⟨2×3×6:30⟩ + ⟨2×3×6:30⟩ + ⟨3×3×6:40⟩ + ⟨3×3×6:40⟩ + ⟨3×3×6:40⟩ + ⟨3×3×6:40⟩ + ⟨3×3×6:40⟩ + ⟨3×3×6:40⟩ + ⟨3×3×6:40⟩ + ⟨2×3×6:30⟩ + ⟨3×3×6:40⟩ + ⟨3×3×6:40⟩.

This decomposition is defined by the following equality:

TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_1_8A_1_9A_1_10A_1_11A_1_12A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_2_8A_2_9A_2_10A_2_11A_2_12A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_3_8A_3_9A_3_10A_3_11A_3_12A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_4_8A_4_9A_4_10A_4_11A_4_12A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6A_5_7A_5_8A_5_9A_5_10A_5_11A_5_12A_6_1A_6_2A_6_3A_6_4A_6_5A_6_6A_6_7A_6_8A_6_9A_6_10A_6_11A_6_12A_7_1A_7_2A_7_3A_7_4A_7_5A_7_6A_7_7A_7_8A_7_9A_7_10A_7_11A_7_12A_8_1A_8_2A_8_3A_8_4A_8_5A_8_6A_8_7A_8_8A_8_9A_8_10A_8_11A_8_12A_9_1A_9_2A_9_3A_9_4A_9_5A_9_6A_9_7A_9_8A_9_9A_9_10A_9_11A_9_12A_10_1A_10_2A_10_3A_10_4A_10_5A_10_6A_10_7A_10_8A_10_9A_10_10A_10_11A_10_12A_11_1A_11_2A_11_3A_11_4A_11_5A_11_6A_11_7A_11_8A_11_9A_11_10A_11_11A_11_12B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_1_12B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_2_12B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_3_12B_4_1B_4_2B_4_3B_4_4B_4_5B_4_6B_4_7B_4_8B_4_9B_4_10B_4_11B_4_12B_5_1B_5_2B_5_3B_5_4B_5_5B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_5_12B_6_1B_6_2B_6_3B_6_4B_6_5B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11B_6_12B_7_1B_7_2B_7_3B_7_4B_7_5B_7_6B_7_7B_7_8B_7_9B_7_10B_7_11B_7_12B_8_1B_8_2B_8_3B_8_4B_8_5B_8_6B_8_7B_8_8B_8_9B_8_10B_8_11B_8_12B_9_1B_9_2B_9_3B_9_4B_9_5B_9_6B_9_7B_9_8B_9_9B_9_10B_9_11B_9_12B_10_1B_10_2B_10_3B_10_4B_10_5B_10_6B_10_7B_10_8B_10_9B_10_10B_10_11B_10_12B_11_1B_11_2B_11_3B_11_4B_11_5B_11_6B_11_7B_11_8B_11_9B_11_10B_11_11B_11_12B_12_1B_12_2B_12_3B_12_4B_12_5B_12_6B_12_7B_12_8B_12_9B_12_10B_12_11B_12_12C_1_1C_1_2C_1_3C_1_4C_1_5C_1_6C_1_7C_1_8C_1_9C_1_10C_1_11C_2_1C_2_2C_2_3C_2_4C_2_5C_2_6C_2_7C_2_8C_2_9C_2_10C_2_11C_3_1C_3_2C_3_3C_3_4C_3_5C_3_6C_3_7C_3_8C_3_9C_3_10C_3_11C_4_1C_4_2C_4_3C_4_4C_4_5C_4_6C_4_7C_4_8C_4_9C_4_10C_4_11C_5_1C_5_2C_5_3C_5_4C_5_5C_5_6C_5_7C_5_8C_5_9C_5_10C_5_11C_6_1C_6_2C_6_3C_6_4C_6_5C_6_6C_6_7C_6_8C_6_9C_6_10C_6_11C_7_1C_7_2C_7_3C_7_4C_7_5C_7_6C_7_7C_7_8C_7_9C_7_10C_7_11C_8_1C_8_2C_8_3C_8_4C_8_5C_8_6C_8_7C_8_8C_8_9C_8_10C_8_11C_9_1C_9_2C_9_3C_9_4C_9_5C_9_6C_9_7C_9_8C_9_9C_9_10C_9_11C_10_1C_10_2C_10_3C_10_4C_10_5C_10_6C_10_7C_10_8C_10_9C_10_10C_10_11C_11_1C_11_2C_11_3C_11_4C_11_5C_11_6C_11_7C_11_8C_11_9C_11_10C_11_11C_12_1C_12_2C_12_3C_12_4C_12_5C_12_6C_12_7C_12_8C_12_9C_12_10C_12_11=TraceMul-A_3_1+A_11_1-A_11_7-A_3_2+A_11_2-A_11_8-A_3_3+A_11_3-A_11_9A_1_1-A_4_1-A_1_7A_1_2-A_4_2-A_1_8A_1_3-A_4_3-A_1_9A_2_1-A_5_1-A_2_7A_2_2-A_5_2-A_2_8A_2_3-A_5_3-A_2_9B_1_7+B_1_1B_1_8+B_1_2B_1_3+B_1_9B_1_4+B_1_10B_1_5+B_1_11B_1_12+B_1_6B_2_7+B_2_1B_2_8+B_2_2B_2_3+B_2_9B_2_4+B_2_10B_2_5+B_2_11B_2_12+B_2_6B_3_1+B_3_7B_3_2+B_3_8B_3_3+B_3_9B_3_4+B_3_10B_3_5+B_3_11B_3_6+B_3_12C_7_11C_7_1C_7_2C_8_11C_8_1C_8_2C_9_11C_9_1C_9_2C_10_11C_10_1C_10_2C_11_11C_11_1C_11_2C_12_11C_12_1C_12_2+TraceMulA_9_1-A_11_4+A_3_4-A_9_4-A_3_7A_9_2-A_11_5+A_3_5-A_9_5-A_3_8A_9_3-A_11_6+A_3_6-A_9_6-A_3_9A_10_1-A_1_4+A_4_4-A_10_4-A_4_7A_10_2-A_1_5+A_4_5-A_10_5-A_4_8A_10_3-A_1_6+A_4_6-A_10_6-A_4_9-A_2_4+A_5_4-A_5_7-A_2_5+A_5_5-A_5_8-A_2_6+A_5_6-A_5_9B_4_1+B_4_7B_4_2+B_4_8B_4_3+B_4_9B_4_4+B_4_10B_4_5+B_4_11B_4_6+B_4_12B_5_1+B_5_7B_5_2+B_5_8B_5_3+B_5_9B_5_4+B_5_10B_5_5+B_5_11B_5_6+B_5_12B_6_1+B_6_7B_6_2+B_6_8B_6_3+B_6_9B_6_4+B_6_10B_6_5+B_6_11B_6_6+B_6_12C_1_3C_1_4C_1_5C_2_3C_2_4C_2_5C_3_3C_3_4C_3_5C_4_3C_4_4C_4_5C_5_3C_5_4C_5_5C_6_3C_6_4C_6_5+TraceMul-A_6_4-A_11_7+A_6_7-A_9_7-A_6_5-A_11_8+A_6_8-A_9_8-A_6_6-A_11_9+A_6_9-A_9_9-A_7_4-A_1_7+A_7_7-A_10_7-A_7_5-A_1_8+A_7_8-A_10_8-A_7_6-A_1_9+A_7_9-A_10_9-A_8_4-A_2_7+A_8_7-A_8_5-A_2_8+A_8_8-A_8_6-A_2_9+A_8_9B_7_1B_7_2B_7_3B_7_4B_7_5B_7_6B_8_1B_8_2B_8_3B_8_4B_8_5B_8_6B_9_1B_9_2B_9_3B_9_4B_9_5B_9_6C_1_6C_1_7C_1_8C_2_6C_2_7C_2_8C_3_6C_3_7C_3_8C_4_6C_4_7C_4_8C_5_6C_5_7C_5_8C_6_6C_6_7C_6_8+TraceMul-A_6_1-A_3_7+A_6_7-A_6_10-A_6_2-A_3_8+A_6_8-A_6_11-A_6_3-A_3_9+A_6_9-A_6_12-A_7_1-A_4_7+A_7_7-A_7_10-A_7_2-A_4_8+A_7_8-A_7_11-A_7_3-A_4_9+A_7_9-A_7_12-A_8_1-A_5_7+A_8_7-A_8_10-A_8_2-A_5_8+A_8_8-A_8_11-A_8_3-A_5_9+A_8_9-A_8_12B_7_7B_7_8B_7_9B_7_10B_7_11B_7_12B_8_7B_8_8B_8_9B_8_10B_8_11B_8_12B_9_7B_9_8B_9_9B_9_10B_9_11B_9_12C_7_6C_7_7C_7_8C_8_6C_8_7C_8_8C_9_6C_9_7C_9_8C_10_6C_10_7C_10_8C_11_6C_11_7C_11_8C_12_6C_12_7C_12_8+TraceMulA_9_1-A_9_7+A_11_10-A_3_10+A_9_10A_9_2-A_9_8+A_11_11-A_3_11+A_9_11A_9_3-A_9_9+A_11_12-A_3_12+A_9_12A_10_1-A_10_7+A_1_10-A_4_10+A_10_10A_10_2-A_10_8+A_1_11-A_4_11+A_10_11A_10_3-A_10_9+A_1_12-A_4_12+A_10_12B_10_1+B_10_7B_10_2+B_10_8B_10_3+B_10_9B_10_4+B_10_10B_10_5+B_10_11B_10_6+B_10_12B_11_1+B_11_7B_11_2+B_11_8B_11_3+B_11_9B_11_4+B_11_10B_11_5+B_11_11B_11_6+B_11_12B_12_1+B_12_7B_12_2+B_12_8B_12_3+B_12_9B_12_4+B_12_10B_12_5+B_12_11B_12_6+B_12_12C_7_9C_7_10C_8_9C_8_10C_9_9C_9_10C_10_9C_10_10C_11_9C_11_10C_12_9C_12_10+TraceMulA_9_1+A_11_4A_9_2+A_11_5A_9_3+A_11_6A_10_1+A_1_4A_1_5+A_10_2A_10_3+A_1_6A_2_4A_2_5A_2_6B_1_1+B_4_1B_1_2+B_4_2B_1_3+B_4_3B_1_4+B_4_4B_1_5+B_4_5B_1_6+B_4_6B_2_1+B_5_1B_2_2+B_5_2B_2_3+B_5_3B_2_4+B_5_4B_2_5+B_5_5B_2_6+B_5_6B_6_1+B_3_1B_6_2+B_3_2B_3_3+B_6_3B_3_4+B_6_4B_3_5+B_6_5B_3_6+B_6_6C_1_3+C_1_11C_1_1+C_1_4C_1_2+C_1_5C_2_3+C_2_11C_2_1+C_2_4C_2_2+C_2_5C_3_3+C_3_11C_3_1+C_3_4C_3_2+C_3_5C_4_3+C_4_11C_4_1+C_4_4C_4_2+C_4_5C_5_3+C_5_11C_5_1+C_5_4C_5_2+C_5_5C_6_3+C_6_11C_6_1+C_6_4C_6_2+C_6_5+TraceMulA_11_7A_11_8A_11_9A_1_7A_1_8A_1_9A_2_7A_2_8A_2_9B_1_1+B_7_1+B_1_7+B_7_7B_1_2+B_7_2+B_1_8+B_7_8B_1_3+B_7_3+B_1_9+B_7_9B_1_4+B_7_4+B_1_10+B_7_10B_1_5+B_7_5+B_1_11+B_7_11B_1_6+B_7_6+B_1_12+B_7_12B_2_1+B_8_1+B_2_7+B_8_7B_2_2+B_8_2+B_2_8+B_8_8B_2_3+B_8_3+B_2_9+B_8_9B_2_4+B_8_4+B_2_10+B_8_10B_2_5+B_8_5+B_2_11+B_8_11B_2_6+B_8_6+B_2_12+B_8_12B_3_1+B_9_1+B_3_7+B_9_7B_3_2+B_9_2+B_3_8+B_9_8B_3_3+B_9_3+B_3_9+B_9_9B_3_4+B_9_4+B_3_10+B_9_10B_3_5+B_9_5+B_3_11+B_9_11B_3_6+B_9_6+B_3_12+B_9_12C_1_6+C_1_11C_1_1+C_1_7C_1_2+C_1_8C_2_6+C_2_11C_2_1+C_2_7C_2_2+C_2_8C_3_6+C_3_11C_3_1+C_3_7C_3_2+C_3_8C_4_6+C_4_11C_4_1+C_4_7C_4_2+C_4_8C_5_6+C_5_11C_5_1+C_5_7C_5_2+C_5_8C_6_6+C_6_11C_6_1+C_6_7C_6_2+C_6_8+TraceMul-A_6_1+A_11_1-A_11_4-A_6_2+A_11_2-A_11_5-A_6_3+A_11_3-A_11_6A_1_1-A_7_1-A_1_4A_1_2-A_7_2-A_1_5A_1_3-A_7_3-A_1_6A_2_1-A_8_1-A_2_4A_2_2-A_8_2-A_2_5A_2_3-A_8_3-A_2_6B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6C_1_11-C_7_11C_1_1-C_7_1C_1_2-C_7_2C_2_11-C_8_11C_2_1-C_8_1C_2_2-C_8_2C_3_11-C_9_11C_3_1-C_9_1C_3_2-C_9_2C_4_11-C_10_11C_4_1-C_10_1C_4_2-C_10_2C_5_11-C_11_11C_5_1-C_11_1C_5_2-C_11_2C_6_11-C_12_11C_6_1-C_12_1-C_12_2+C_6_2+TraceMulA_3_1-A_11_4A_3_2-A_11_5A_3_3-A_11_6A_4_1-A_1_4A_4_2-A_1_5A_4_3-A_1_6A_5_1-A_2_4A_5_2-A_2_5A_5_3-A_2_6B_1_1-B_4_7B_1_2-B_4_8B_1_3-B_4_9B_1_4-B_4_10B_1_5-B_4_11B_1_6-B_4_12B_2_1-B_5_7B_2_2-B_5_8B_2_3-B_5_9B_2_4-B_5_10B_2_5-B_5_11B_2_6-B_5_12B_3_1-B_6_7B_3_2-B_6_8B_3_3-B_6_9B_3_4-B_6_10B_3_5-B_6_11B_3_6-B_6_12C_7_11+C_1_3C_7_1+C_1_4C_7_2+C_1_5C_8_11+C_2_3C_8_1+C_2_4C_8_2+C_2_5C_9_11+C_3_3C_9_1+C_3_4C_9_2+C_3_5C_10_11+C_4_3C_10_1+C_4_4C_10_2+C_4_5C_11_11+C_5_3C_11_1+C_5_4C_11_2+C_5_5C_12_11+C_6_3C_12_1+C_6_4C_12_2+C_6_5+TraceMulA_3_1+A_11_10A_3_2+A_11_11A_3_3+A_11_12A_4_1+A_1_10A_4_2+A_1_11A_4_3+A_1_12A_5_1+A_2_10A_5_2+A_2_11A_5_3+A_2_12B_1_7+B_4_7B_1_8+B_4_8B_1_9+B_4_9B_1_10+B_4_10B_1_11+B_4_11B_1_12+B_4_12B_2_7+B_5_7B_2_8+B_5_8B_2_9+B_5_9B_2_10+B_5_10B_2_11+B_5_11B_2_12+B_5_12B_6_7+B_3_7B_3_8+B_6_8B_3_9+B_6_9B_3_10+B_6_10B_3_11+B_6_11B_3_12+B_6_12C_7_3+C_7_11C_7_1+C_7_4C_7_2+C_7_5C_8_3+C_8_11C_8_1+C_8_4C_8_2+C_8_5C_9_3+C_9_11C_9_1+C_9_4C_9_2+C_9_5C_10_3+C_10_11C_10_1+C_10_4C_10_2+C_10_5C_11_3+C_11_11C_11_1+C_11_4C_11_2+C_11_5C_12_3+C_12_11C_12_1+C_12_4C_12_2+C_12_5+TraceMul-A_9_1+A_9_4-A_9_2+A_9_5-A_9_3+A_9_6-A_10_1+A_10_4-A_10_2+A_10_5-A_10_3+A_10_6B_4_1+B_10_1B_4_2+B_10_2B_4_3+B_10_3B_4_4+B_10_4B_4_5+B_10_5B_4_6+B_10_6B_5_1+B_11_1B_5_2+B_11_2B_5_3+B_11_3B_5_4+B_11_4B_5_5+B_11_5B_5_6+B_11_6B_6_1+B_12_1B_6_2+B_12_2B_6_3+B_12_3B_6_4+B_12_4B_6_5+B_12_5B_6_6+B_12_6C_1_3+C_1_9C_1_4+C_1_10C_2_3+C_2_9C_2_4+C_2_10C_3_3+C_3_9C_3_4+C_3_10C_4_3+C_4_9C_4_4+C_4_10C_5_3+C_5_9C_5_4+C_5_10C_6_3+C_6_9C_6_4+C_6_10+TraceMulA_3_1-A_3_4+A_6_4-A_11_10+A_3_10A_3_2-A_3_5+A_6_5-A_11_11+A_3_11-A_3_6+A_3_3+A_6_6-A_11_12+A_3_12A_4_1-A_4_4+A_7_4-A_1_10+A_4_10A_4_2-A_4_5+A_7_5-A_1_11+A_4_11A_4_3-A_4_6+A_7_6-A_1_12+A_4_12A_5_1-A_5_4+A_8_4-A_2_10+A_5_10A_5_2-A_5_5+A_8_5-A_2_11+A_5_11A_5_3-A_5_6+A_8_6-A_2_12+A_5_12B_4_7B_4_8B_4_9B_4_10B_4_11B_4_12B_5_7B_5_8B_5_9B_5_10B_5_11B_5_12B_6_7B_6_8B_6_9B_6_10B_6_11B_6_12C_1_3-C_7_3C_1_4-C_7_4C_1_5-C_7_5-C_8_3+C_2_3C_2_4-C_8_4C_2_5-C_8_5C_3_3-C_9_3C_3_4-C_9_4C_3_5-C_9_5C_4_3-C_10_3C_4_4-C_10_4C_4_5-C_10_5C_5_3-C_11_3C_5_4-C_11_4C_5_5-C_11_5-C_12_3+C_6_3C_6_4-C_12_4C_6_5-C_12_5+TraceMulA_3_7A_3_8A_3_9A_4_7A_4_8A_4_9A_5_7A_5_8A_5_9B_4_1+B_7_1+B_4_7+B_7_7B_4_2+B_7_2+B_4_8+B_7_8B_4_3+B_7_3+B_4_9+B_7_9B_7_4+B_4_4+B_4_10+B_7_10B_7_5+B_4_5+B_4_11+B_7_11B_4_6+B_7_6+B_4_12+B_7_12B_5_1+B_8_1+B_5_7+B_8_7B_5_2+B_8_2+B_5_8+B_8_8B_5_3+B_8_3+B_5_9+B_8_9B_5_4+B_8_4+B_5_10+B_8_10B_5_5+B_8_5+B_5_11+B_8_11B_5_6+B_8_6+B_5_12+B_8_12B_6_1+B_9_1+B_6_7+B_9_7B_6_2+B_9_2+B_6_8+B_9_8B_6_3+B_9_3+B_6_9+B_9_9B_6_4+B_9_4+B_6_10+B_9_10B_6_5+B_9_5+B_6_11+B_9_11B_6_6+B_9_6+B_6_12+B_9_12C_7_3+C_7_6C_7_4+C_7_7C_7_5+C_7_8C_8_3+C_8_6C_8_4+C_8_7C_8_5+C_8_8C_9_3+C_9_6C_9_4+C_9_7C_9_5+C_9_8C_10_3+C_10_6C_10_4+C_10_7C_10_5+C_10_8C_11_3+C_11_6C_11_4+C_11_7C_11_5+C_11_8C_12_3+C_12_6C_12_4+C_12_7C_12_5+C_12_8+TraceMulA_3_10-A_11_10A_3_11-A_11_11A_3_12-A_11_12-A_1_10+A_4_10-A_1_11+A_4_11-A_1_12+A_4_12-A_2_10+A_5_10-A_2_11+A_5_11-A_2_12+A_5_12B_4_7+B_10_7B_4_8+B_10_8B_4_9+B_10_9B_4_10+B_10_10B_4_11+B_10_11B_4_12+B_10_12B_5_7+B_11_7B_5_8+B_11_8B_5_9+B_11_9B_5_10+B_11_10B_5_11+B_11_11B_5_12+B_11_12B_6_7+B_12_7B_6_8+B_12_8B_6_9+B_12_9B_6_10+B_12_10B_6_11+B_12_11B_6_12+B_12_12C_7_3+C_7_9C_7_4+C_7_10C_7_5C_8_3+C_8_9C_8_4+C_8_10C_8_5C_9_3+C_9_9C_9_4+C_9_10C_9_5C_10_3+C_10_9C_10_4+C_10_10C_10_5C_11_3+C_11_9C_11_4+C_11_10C_11_5C_12_3+C_12_9C_12_4+C_12_10C_12_5+TraceMulA_9_7A_9_8A_9_9A_10_7A_10_8A_10_9B_7_1+B_10_1+B_7_7+B_10_7B_7_2+B_10_2+B_7_8+B_10_8B_7_3+B_10_3+B_7_9+B_10_9B_7_4+B_10_4+B_7_10+B_10_10B_7_5+B_10_5+B_7_11+B_10_11B_7_6+B_10_6+B_7_12+B_10_12B_8_1+B_11_1+B_8_7+B_11_7B_8_2+B_11_2+B_8_8+B_11_8B_8_3+B_11_3+B_8_9+B_11_9B_8_4+B_11_4+B_8_10+B_11_10B_8_5+B_11_5+B_8_11+B_11_11B_8_6+B_11_6+B_8_12+B_11_12B_9_1+B_12_1+B_9_7+B_12_7B_9_2+B_12_2+B_9_8+B_12_8B_9_3+B_12_3+B_9_9+B_12_9B_9_4+B_12_4+B_9_10+B_12_10B_9_5+B_12_5+B_9_11+B_12_11B_9_6+B_12_6+B_9_12+B_12_12C_1_6+C_1_9C_1_7+C_1_10C_2_6+C_2_9C_2_7+C_2_10C_3_6+C_3_9C_3_7+C_3_10C_4_6+C_4_9C_4_7+C_4_10C_5_6+C_5_9C_5_7+C_5_10C_6_6+C_6_9C_6_7+C_6_10+TraceMulA_9_1-A_9_4+A_11_10-A_6_10+A_9_10A_9_2-A_9_5+A_11_11-A_6_11+A_9_11A_9_3-A_9_6+A_11_12-A_6_12+A_9_12A_10_1-A_10_4+A_1_10-A_7_10+A_10_10A_10_2-A_10_5+A_1_11-A_7_11+A_10_11A_10_3-A_10_6+A_1_12-A_7_12+A_10_12B_10_1B_10_2B_10_3B_10_4B_10_5B_10_6B_11_1B_11_2B_11_3B_11_4B_11_5B_11_6B_12_1B_12_2B_12_3B_12_4B_12_5B_12_6C_1_9-C_7_9C_1_10-C_7_10C_2_9-C_8_9C_2_10-C_8_10C_3_9-C_9_9C_3_10-C_9_10C_4_9-C_10_9C_4_10-C_10_10C_5_9-C_11_9C_5_10-C_11_10C_6_9-C_12_9C_6_10-C_12_10+TraceMulA_9_1-A_9_4-A_11_10+A_3_10A_9_2-A_9_5-A_11_11+A_3_11A_9_3-A_9_6-A_11_12+A_3_12A_10_1-A_10_4-A_1_10+A_4_10A_10_2-A_10_5-A_1_11+A_4_11A_10_3-A_10_6-A_1_12+A_4_12-A_2_10+A_5_10-A_2_11+A_5_11-A_2_12+A_5_12B_10_1-B_4_7B_10_2-B_4_8B_10_3-B_4_9B_10_4-B_4_10B_10_5-B_4_11B_10_6-B_4_12B_11_1-B_5_7B_11_2-B_5_8B_11_3-B_5_9B_11_4-B_5_10B_11_5-B_5_11B_11_6-B_5_12B_12_1-B_6_7B_12_2-B_6_8B_12_3-B_6_9B_12_4-B_6_10B_12_5-B_6_11B_12_6-B_6_12C_1_3+C_7_9C_1_4+C_7_10C_1_5C_2_3+C_8_9C_2_4+C_8_10C_2_5C_3_3+C_9_9C_3_4+C_9_10C_3_5C_4_3+C_10_9C_4_4+C_10_10C_4_5C_5_3+C_11_9C_5_4+C_11_10C_5_5C_6_3+C_12_9C_6_4+C_12_10C_6_5+TraceMulA_6_1-A_11_7A_6_2-A_11_8A_6_3-A_11_9A_7_1-A_1_7A_7_2-A_1_8A_7_3-A_1_9A_8_1-A_2_7A_8_2-A_2_8A_8_3-A_2_9B_1_7+B_1_1+B_7_7B_1_8+B_1_2+B_7_8B_1_3+B_1_9+B_7_9B_1_4+B_1_10+B_7_10B_1_5+B_1_11+B_7_11B_1_12+B_1_6+B_7_12B_2_7+B_2_1+B_8_7B_2_8+B_2_2+B_8_8B_2_3+B_2_9+B_8_9B_2_4+B_2_10+B_8_10B_2_5+B_2_11+B_8_11B_2_12+B_2_6+B_8_12B_3_1+B_3_7+B_9_7B_3_2+B_3_8+B_9_8B_3_3+B_3_9+B_9_9B_3_4+B_3_10+B_9_10B_3_5+B_3_11+B_9_11B_3_6+B_3_12+B_9_12C_1_11-C_7_11+C_1_6C_1_1-C_7_1+C_1_7C_1_2-C_7_2+C_1_8C_2_11-C_8_11+C_2_6C_2_1-C_8_1+C_2_7C_2_2-C_8_2+C_2_8C_3_11-C_9_11+C_3_6C_3_1-C_9_1+C_3_7C_3_2-C_9_2+C_3_8C_4_11-C_10_11+C_4_6C_4_1-C_10_1+C_4_7C_4_2-C_10_2+C_4_8C_5_11-C_11_11+C_5_6C_5_1-C_11_1+C_5_7C_5_2-C_11_2+C_5_8C_6_11-C_12_11+C_6_6C_6_1-C_12_1+C_6_7-C_12_2+C_6_2+C_6_8+TraceMul-A_6_4+A_3_7-A_6_5+A_3_8-A_6_6+A_3_9-A_7_4+A_4_7-A_7_5+A_4_8-A_7_6+A_4_9-A_8_4+A_5_7-A_8_5+A_5_8-A_8_6+A_5_9B_4_1+B_7_1+B_4_7B_4_2+B_7_2+B_4_8B_4_3+B_7_3+B_4_9B_7_4+B_4_4+B_4_10B_7_5+B_4_5+B_4_11B_4_6+B_7_6+B_4_12B_5_1+B_8_1+B_5_7B_5_2+B_8_2+B_5_8B_5_3+B_8_3+B_5_9B_5_4+B_8_4+B_5_10B_5_5+B_8_5+B_5_11B_5_6+B_8_6+B_5_12B_6_1+B_9_1+B_6_7B_6_2+B_9_2+B_6_8B_6_3+B_9_3+B_6_9B_6_4+B_9_4+B_6_10B_6_5+B_9_5+B_6_11B_6_6+B_9_6+B_6_12C_1_3-C_7_3-C_7_6C_1_4-C_7_4-C_7_7C_1_5-C_7_5-C_7_8-C_8_3+C_2_3-C_8_6C_2_4-C_8_4-C_8_7C_2_5-C_8_5-C_8_8C_3_3-C_9_3-C_9_6C_3_4-C_9_4-C_9_7C_3_5-C_9_5-C_9_8C_4_3-C_10_3-C_10_6C_4_4-C_10_4-C_10_7C_4_5-C_10_5-C_10_8C_5_3-C_11_3-C_11_6C_5_4-C_11_4-C_11_7C_5_5-C_11_5-C_11_8-C_12_3+C_6_3-C_12_6C_6_4-C_12_4-C_12_7C_6_5-C_12_5-C_12_8+TraceMul-A_9_7+A_6_10-A_9_8+A_6_11-A_9_9+A_6_12-A_10_7+A_7_10-A_10_8+A_7_11-A_10_9+A_7_12A_8_10A_8_11A_8_12B_10_1+B_7_7+B_10_7B_10_2+B_7_8+B_10_8B_10_3+B_7_9+B_10_9B_10_4+B_7_10+B_10_10B_10_5+B_7_11+B_10_11B_10_6+B_7_12+B_10_12B_11_1+B_8_7+B_11_7B_11_2+B_8_8+B_11_8B_11_3+B_8_9+B_11_9B_11_4+B_8_10+B_11_10B_11_5+B_8_11+B_11_11B_11_6+B_8_12+B_11_12B_12_1+B_9_7+B_12_7B_12_2+B_9_8+B_12_8B_12_3+B_9_9+B_12_9B_12_4+B_9_10+B_12_10B_12_5+B_9_11+B_12_11B_12_6+B_9_12+B_12_12C_1_6+C_1_9-C_7_9C_1_7+C_1_10-C_7_10C_1_8C_2_6+C_2_9-C_8_9C_2_7+C_2_10-C_8_10C_2_8C_3_6+C_3_9-C_9_9C_3_7+C_3_10-C_9_10C_3_8C_4_6+C_4_9-C_10_9C_4_7+C_4_10-C_10_10C_4_8C_5_6+C_5_9-C_11_9C_5_7+C_5_10-C_11_10C_5_8C_6_6+C_6_9-C_12_9C_6_7+C_6_10-C_12_10C_6_8+TraceMulA_6_4A_6_5A_6_6A_7_4A_7_5A_7_6A_8_4A_8_5A_8_6B_4_1+B_7_1B_4_2+B_7_2B_4_3+B_7_3B_7_4+B_4_4B_7_5+B_4_5B_4_6+B_7_6B_5_1+B_8_1B_5_2+B_8_2B_5_3+B_8_3B_5_4+B_8_4B_5_5+B_8_5B_5_6+B_8_6B_6_1+B_9_1B_6_2+B_9_2B_6_3+B_9_3B_6_4+B_9_4B_6_5+B_9_5B_6_6+B_9_6C_1_3-C_7_3+C_1_6-C_7_6C_1_4-C_7_4+C_1_7-C_7_7C_1_5-C_7_5+C_1_8-C_7_8-C_8_3+C_2_3+C_2_6-C_8_6C_2_4-C_8_4+C_2_7-C_8_7C_2_5-C_8_5+C_2_8-C_8_8C_3_3-C_9_3+C_3_6-C_9_6C_3_4-C_9_4+C_3_7-C_9_7C_3_5-C_9_5+C_3_8-C_9_8C_4_3-C_10_3+C_4_6-C_10_6C_4_4-C_10_4+C_4_7-C_10_7C_4_5-C_10_5+C_4_8-C_10_8C_5_3-C_11_3+C_5_6-C_11_6C_5_4-C_11_4+C_5_7-C_11_7C_5_5-C_11_5+C_5_8-C_11_8-C_12_3+C_6_3+C_6_6-C_12_6C_6_4-C_12_4+C_6_7-C_12_7C_6_5-C_12_5+C_6_8-C_12_8+TraceMul-A_9_1+A_11_10-A_9_2+A_11_11-A_9_3+A_11_12-A_10_1+A_1_10-A_10_2+A_1_11-A_10_3+A_1_12A_2_10A_2_11A_2_12B_10_1-B_1_7-B_4_7+B_10_7B_10_2-B_1_8-B_4_8+B_10_8B_10_3-B_1_9-B_4_9+B_10_9B_10_4-B_1_10-B_4_10+B_10_10B_10_5-B_1_11-B_4_11+B_10_11B_10_6-B_1_12-B_4_12+B_10_12B_11_1-B_2_7-B_5_7+B_11_7B_11_2-B_2_8-B_5_8+B_11_8B_11_3-B_2_9-B_5_9+B_11_9B_11_4-B_2_10-B_5_10+B_11_10B_11_5-B_2_11-B_5_11+B_11_11B_11_6-B_2_12-B_5_12+B_11_12B_12_1-B_3_7-B_6_7+B_12_7B_12_2-B_3_8-B_6_8+B_12_8B_12_3-B_3_9-B_6_9+B_12_9B_12_4-B_3_10-B_6_10+B_12_10B_12_5-B_3_11-B_6_11+B_12_11B_12_6-B_3_12-B_6_12+B_12_12C_1_3+C_1_11-C_1_9+C_7_9C_1_1+C_1_4-C_1_10+C_7_10C_1_2+C_1_5C_2_3+C_2_11-C_2_9+C_8_9C_2_1+C_2_4-C_2_10+C_8_10C_2_2+C_2_5C_3_3+C_3_11-C_3_9+C_9_9C_3_1+C_3_4-C_3_10+C_9_10C_3_2+C_3_5C_4_3+C_4_11-C_4_9+C_10_9C_4_1+C_4_4-C_4_10+C_10_10C_4_2+C_4_5C_5_3+C_5_11-C_5_9+C_11_9C_5_1+C_5_4-C_5_10+C_11_10C_5_2+C_5_5C_6_3+C_6_11-C_6_9+C_12_9C_6_1+C_6_4-C_6_10+C_12_10C_6_2+C_6_5+TraceMulA_11_10A_11_11A_11_12A_1_10A_1_11A_1_12A_2_10A_2_11A_2_12B_1_7+B_4_7-B_10_7B_1_8+B_4_8-B_10_8B_1_9+B_4_9-B_10_9B_1_10+B_4_10-B_10_10B_1_11+B_4_11-B_10_11B_1_12+B_4_12-B_10_12B_2_7+B_5_7-B_11_7B_2_8+B_5_8-B_11_8B_2_9+B_5_9-B_11_9B_2_10+B_5_10-B_11_10B_2_11+B_5_11-B_11_11B_2_12+B_5_12-B_11_12B_6_7+B_3_7-B_12_7B_3_8+B_6_8-B_12_8B_3_9+B_6_9-B_12_9B_3_10+B_6_10-B_12_10B_3_11+B_6_11-B_12_11B_3_12+B_6_12-B_12_12C_1_11-C_7_11+C_1_3-C_7_3-C_1_9+C_7_9C_1_1-C_7_1+C_1_4-C_7_4-C_1_10+C_7_10C_1_2-C_7_2+C_1_5-C_7_5C_2_11-C_8_11+C_2_3-C_8_3-C_2_9+C_8_9C_2_1-C_8_1+C_2_4-C_8_4-C_2_10+C_8_10C_2_2-C_8_2+C_2_5-C_8_5C_3_11-C_9_11+C_3_3-C_9_3-C_3_9+C_9_9C_3_1-C_9_1+C_3_4-C_9_4-C_3_10+C_9_10C_3_2-C_9_2+C_3_5-C_9_5C_4_11-C_10_11+C_4_3-C_10_3-C_4_9+C_10_9C_4_1-C_10_1+C_4_4-C_10_4-C_4_10+C_10_10C_4_2-C_10_2+C_4_5-C_10_5C_5_11-C_11_11+C_5_3-C_11_3-C_5_9+C_11_9C_5_1-C_11_1+C_5_4-C_11_4-C_5_10+C_11_10C_5_2-C_11_2+C_5_5-C_11_5C_6_11-C_12_11+C_6_3-C_12_3-C_6_9+C_12_9C_6_1-C_12_1+C_6_4-C_12_4-C_6_10+C_12_10-C_12_2+C_6_2+C_6_5-C_12_5+TraceMulA_9_1A_9_2A_9_3A_10_1A_10_2A_10_3B_1_1+B_4_1-B_10_1+B_1_7+B_4_7-B_10_7B_1_2+B_4_2-B_10_2+B_1_8+B_4_8-B_10_8B_1_3+B_4_3-B_10_3+B_1_9+B_4_9-B_10_9B_1_4+B_4_4-B_10_4+B_1_10+B_4_10-B_10_10B_1_5+B_4_5-B_10_5+B_1_11+B_4_11-B_10_11B_1_6+B_4_6-B_10_6+B_1_12+B_4_12-B_10_12B_2_1+B_5_1-B_11_1+B_2_7+B_5_7-B_11_7B_2_2+B_5_2-B_11_2+B_2_8+B_5_8-B_11_8B_2_3+B_5_3-B_11_3+B_2_9+B_5_9-B_11_9B_2_4+B_5_4-B_11_4+B_2_10+B_5_10-B_11_10B_2_5+B_5_5-B_11_5+B_2_11+B_5_11-B_11_11B_2_6+B_5_6-B_11_6+B_2_12+B_5_12-B_11_12B_6_1+B_3_1-B_12_1+B_3_7+B_6_7-B_12_7B_6_2+B_3_2-B_12_2+B_3_8+B_6_8-B_12_8B_3_3+B_6_3-B_12_3+B_3_9+B_6_9-B_12_9B_3_4+B_6_4-B_12_4+B_3_10+B_6_10-B_12_10B_3_5+B_6_5-B_12_5+B_3_11+B_6_11-B_12_11B_3_6+B_6_6-B_12_6+B_3_12+B_6_12-B_12_12-C_1_11-C_1_3+C_1_9-C_1_1-C_1_4+C_1_10-C_2_11-C_2_3+C_2_9-C_2_1-C_2_4+C_2_10-C_3_11-C_3_3+C_3_9-C_3_1-C_3_4+C_3_10-C_4_11-C_4_3+C_4_9-C_4_1-C_4_4+C_4_10-C_5_11-C_5_3+C_5_9-C_5_1-C_5_4+C_5_10-C_6_11-C_6_3+C_6_9-C_6_1-C_6_4+C_6_10+TraceMulA_6_1A_6_2A_6_3A_7_1A_7_2A_7_3A_8_1A_8_2A_8_3B_1_7+B_7_7B_1_8+B_7_8B_1_9+B_7_9B_1_10+B_7_10B_1_11+B_7_11B_1_12+B_7_12B_2_7+B_8_7B_2_8+B_8_8B_2_9+B_8_9B_2_10+B_8_10B_2_11+B_8_11B_2_12+B_8_12B_3_7+B_9_7B_3_8+B_9_8B_3_9+B_9_9B_3_10+B_9_10B_3_11+B_9_11B_3_12+B_9_12-C_1_11+C_7_11-C_1_6+C_7_6C_7_1-C_1_1-C_1_7+C_7_7-C_1_2+C_7_2-C_1_8+C_7_8-C_2_11+C_8_11-C_2_6+C_8_6-C_2_1+C_8_1-C_2_7+C_8_7-C_2_2+C_8_2-C_2_8+C_8_8-C_3_11+C_9_11-C_3_6+C_9_6-C_3_1+C_9_1-C_3_7+C_9_7-C_3_2+C_9_2-C_3_8+C_9_8-C_4_11+C_10_11-C_4_6+C_10_6-C_4_1+C_10_1-C_4_7+C_10_7-C_4_2+C_10_2-C_4_8+C_10_8-C_5_11+C_11_11-C_5_6+C_11_6-C_5_1+C_11_1-C_5_7+C_11_7-C_5_2+C_11_2-C_5_8+C_11_8-C_6_11+C_12_11-C_6_6+C_12_6-C_6_1+C_12_1-C_6_7+C_12_7-C_6_2+C_12_2-C_6_8+C_12_8+TraceMulA_6_10A_6_11A_6_12A_7_10A_7_11A_7_12A_8_10A_8_11A_8_12B_7_7+B_10_7B_10_8+B_7_8B_7_9+B_10_9B_7_10+B_10_10B_7_11+B_10_11B_10_12+B_7_12B_8_7+B_11_7B_8_8+B_11_8B_8_9+B_11_9B_8_10+B_11_10B_8_11+B_11_11B_8_12+B_11_12B_9_7+B_12_7B_9_8+B_12_8B_9_9+B_12_9B_9_10+B_12_10B_9_11+B_12_11B_9_12+B_12_12-C_1_6+C_7_6-C_1_9+C_7_9-C_1_7+C_7_7-C_1_10+C_7_10-C_1_8+C_7_8-C_2_6+C_8_6-C_2_9+C_8_9-C_2_7+C_8_7-C_2_10+C_8_10-C_2_8+C_8_8-C_3_6+C_9_6-C_3_9+C_9_9-C_3_7+C_9_7-C_3_10+C_9_10-C_3_8+C_9_8-C_4_6+C_10_6-C_4_9+C_10_9-C_4_7+C_10_7-C_4_10+C_10_10-C_4_8+C_10_8-C_5_6+C_11_6-C_5_9+C_11_9-C_5_7+C_11_7-C_5_10+C_11_10-C_5_8+C_11_8-C_6_6+C_12_6-C_6_9+C_12_9-C_6_7+C_12_7-C_6_10+C_12_10-C_6_8+C_12_8

N.B.: for any matrices A, B and C such that the expression Tr(Mul(A,B,C)) is defined, one can construct several trilinear homogeneous polynomials P(A,B,C) such that P(A,B,C)=Tr(Mul(A,B,C)) (P(A,B,C) variables are A,B and C's coefficients). Each trilinear P expression encodes a matrix multiplication algorithm: the coefficient in C_i_j of P(A,B,C) is the (i,j)-th entry of the matrix product Mul(A,B)=Transpose(C).

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table