Description of fast matrix multiplication algorithm: ⟨10×32×32:5980⟩

Algorithm type

18X8Y8Z8+2X2Y18Z2+2XY18Z2+6X8Y8Z4+42X6Y8Z6+12X4Y12Z4+6X4Y8Z8+12X10Y4Z4+2X4Y12Z2+12X4Y4Z10+14X3Y12Z3+8X2Y12Z4+6X10Y4Z2+6X6Y8Z2+78X4Y8Z4+2X3Y12Z+26X2Y12Z2+6X2Y8Z6+6X2Y4Z10+2XY12Z3+2X2Y12Z+8XY12Z2+14X4Y8Z2+6X4Y4Z6+56X3Y8Z3+8X2Y8Z4+2XY12Z+4X5Y6Z2+4X2Y6Z5+6X6Y4Z2+2X5Y6Z+330X4Y4Z4+8X3Y8Z+78X2Y8Z2+8XY8Z3+2XY6Z5+16X5Y4Z2+8X2Y8Z+2X2Y6Z3+16X2Y4Z5+24XY9Z+54X6Y2Z2+8X5Y4Z+52X4Y4Z2+2X3Y6Z+70X3Y4Z3+182X2Y6Z2+46X2Y4Z4+54X2Y2Z6+8XY8Z+8XY4Z5+20X5Y2Z2+14X2Y6Z+8X2Y4Z3+20X2Y2Z5+22XY6Z2+10X5Y2Z+18X4Y2Z2+18X3Y4Z+832X2Y4Z2+18X2Y2Z4+210XY6Z+10XY4Z3+10XY2Z5+18X3Y3Z+66X2Y4Z+10X2Y2Z3+48XY4Z2+18XY3Z3+82X3Y2Z+6X2Y3Z+734X2Y2Z2+466XY4Z+6XY3Z2+72XY2Z3+90X3YZ+94X2Y2Z+198XY3Z+84XY2Z2+90XYZ3+30X2YZ+882XY2Z+30XYZ2+390XYZ18X8Y8Z82X2Y18Z22XY18Z26X8Y8Z442X6Y8Z612X4Y12Z46X4Y8Z812X10Y4Z42X4Y12Z212X4Y4Z1014X3Y12Z38X2Y12Z46X10Y4Z26X6Y8Z278X4Y8Z42X3Y12Z26X2Y12Z26X2Y8Z66X2Y4Z102XY12Z32X2Y12Z8XY12Z214X4Y8Z26X4Y4Z656X3Y8Z38X2Y8Z42XY12Z4X5Y6Z24X2Y6Z56X6Y4Z22X5Y6Z330X4Y4Z48X3Y8Z78X2Y8Z28XY8Z32XY6Z516X5Y4Z28X2Y8Z2X2Y6Z316X2Y4Z524XY9Z54X6Y2Z28X5Y4Z52X4Y4Z22X3Y6Z70X3Y4Z3182X2Y6Z246X2Y4Z454X2Y2Z68XY8Z8XY4Z520X5Y2Z214X2Y6Z8X2Y4Z320X2Y2Z522XY6Z210X5Y2Z18X4Y2Z218X3Y4Z832X2Y4Z218X2Y2Z4210XY6Z10XY4Z310XY2Z518X3Y3Z66X2Y4Z10X2Y2Z348XY4Z218XY3Z382X3Y2Z6X2Y3Z734X2Y2Z2466XY4Z6XY3Z272XY2Z390X3YZ94X2Y2Z198XY3Z84XY2Z290XYZ330X2YZ882XY2Z30XYZ2390XYZ18*X^8*Y^8*Z^8+2*X^2*Y^18*Z^2+2*X*Y^18*Z^2+6*X^8*Y^8*Z^4+42*X^6*Y^8*Z^6+12*X^4*Y^12*Z^4+6*X^4*Y^8*Z^8+12*X^10*Y^4*Z^4+2*X^4*Y^12*Z^2+12*X^4*Y^4*Z^10+14*X^3*Y^12*Z^3+8*X^2*Y^12*Z^4+6*X^10*Y^4*Z^2+6*X^6*Y^8*Z^2+78*X^4*Y^8*Z^4+2*X^3*Y^12*Z+26*X^2*Y^12*Z^2+6*X^2*Y^8*Z^6+6*X^2*Y^4*Z^10+2*X*Y^12*Z^3+2*X^2*Y^12*Z+8*X*Y^12*Z^2+14*X^4*Y^8*Z^2+6*X^4*Y^4*Z^6+56*X^3*Y^8*Z^3+8*X^2*Y^8*Z^4+2*X*Y^12*Z+4*X^5*Y^6*Z^2+4*X^2*Y^6*Z^5+6*X^6*Y^4*Z^2+2*X^5*Y^6*Z+330*X^4*Y^4*Z^4+8*X^3*Y^8*Z+78*X^2*Y^8*Z^2+8*X*Y^8*Z^3+2*X*Y^6*Z^5+16*X^5*Y^4*Z^2+8*X^2*Y^8*Z+2*X^2*Y^6*Z^3+16*X^2*Y^4*Z^5+24*X*Y^9*Z+54*X^6*Y^2*Z^2+8*X^5*Y^4*Z+52*X^4*Y^4*Z^2+2*X^3*Y^6*Z+70*X^3*Y^4*Z^3+182*X^2*Y^6*Z^2+46*X^2*Y^4*Z^4+54*X^2*Y^2*Z^6+8*X*Y^8*Z+8*X*Y^4*Z^5+20*X^5*Y^2*Z^2+14*X^2*Y^6*Z+8*X^2*Y^4*Z^3+20*X^2*Y^2*Z^5+22*X*Y^6*Z^2+10*X^5*Y^2*Z+18*X^4*Y^2*Z^2+18*X^3*Y^4*Z+832*X^2*Y^4*Z^2+18*X^2*Y^2*Z^4+210*X*Y^6*Z+10*X*Y^4*Z^3+10*X*Y^2*Z^5+18*X^3*Y^3*Z+66*X^2*Y^4*Z+10*X^2*Y^2*Z^3+48*X*Y^4*Z^2+18*X*Y^3*Z^3+82*X^3*Y^2*Z+6*X^2*Y^3*Z+734*X^2*Y^2*Z^2+466*X*Y^4*Z+6*X*Y^3*Z^2+72*X*Y^2*Z^3+90*X^3*Y*Z+94*X^2*Y^2*Z+198*X*Y^3*Z+84*X*Y^2*Z^2+90*X*Y*Z^3+30*X^2*Y*Z+882*X*Y^2*Z+30*X*Y*Z^2+390*X*Y*Z

Algorithm definition

The algorithm ⟨10×32×32:5980⟩ is the (Kronecker) tensor product of ⟨2×4×4:26⟩ with ⟨5×8×8:230⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table