Description of fast matrix multiplication algorithm: ⟨10×28×28:4576⟩

Algorithm type

6X6Y4Z4+60X4Y6Z4+6X2Y2Z10+20X2Y9Z2+348X4Y4Z4+18X2Y2Z8+2X3Y6Z2+16XY9Z+24X6Y2Z2+6X4Y4Z2+244X2Y6Z2+42X2Y4Z4+6X2Y2Z6+8X3Y4Z2+2X2Y6Z+14XY6Z2+2XY3Z5+114X4Y2Z2+614X2Y4Z2+90X2Y2Z4+114XY6Z+6XY3Z4+8XY2Z5+8X3Y3Z+10X3Y2Z2+8X2Y4Z+100X2Y3Z2+56XY4Z2+2XY3Z3+24XY2Z4+10XYZ5+32X3Y2Z+38X2Y3Z+718X2Y2Z2+200XY4Z+30XY3Z2+8XY2Z3+30XYZ4+40X3YZ+162X2Y2Z+126XY3Z+190XY2Z2+10XYZ3+190X2YZ+434XY2Z+150XYZ2+230XYZ6X6Y4Z460X4Y6Z46X2Y2Z1020X2Y9Z2348X4Y4Z418X2Y2Z82X3Y6Z216XY9Z24X6Y2Z26X4Y4Z2244X2Y6Z242X2Y4Z46X2Y2Z68X3Y4Z22X2Y6Z14XY6Z22XY3Z5114X4Y2Z2614X2Y4Z290X2Y2Z4114XY6Z6XY3Z48XY2Z58X3Y3Z10X3Y2Z28X2Y4Z100X2Y3Z256XY4Z22XY3Z324XY2Z410XYZ532X3Y2Z38X2Y3Z718X2Y2Z2200XY4Z30XY3Z28XY2Z330XYZ440X3YZ162X2Y2Z126XY3Z190XY2Z210XYZ3190X2YZ434XY2Z150XYZ2230XYZ6*X^6*Y^4*Z^4+60*X^4*Y^6*Z^4+6*X^2*Y^2*Z^10+20*X^2*Y^9*Z^2+348*X^4*Y^4*Z^4+18*X^2*Y^2*Z^8+2*X^3*Y^6*Z^2+16*X*Y^9*Z+24*X^6*Y^2*Z^2+6*X^4*Y^4*Z^2+244*X^2*Y^6*Z^2+42*X^2*Y^4*Z^4+6*X^2*Y^2*Z^6+8*X^3*Y^4*Z^2+2*X^2*Y^6*Z+14*X*Y^6*Z^2+2*X*Y^3*Z^5+114*X^4*Y^2*Z^2+614*X^2*Y^4*Z^2+90*X^2*Y^2*Z^4+114*X*Y^6*Z+6*X*Y^3*Z^4+8*X*Y^2*Z^5+8*X^3*Y^3*Z+10*X^3*Y^2*Z^2+8*X^2*Y^4*Z+100*X^2*Y^3*Z^2+56*X*Y^4*Z^2+2*X*Y^3*Z^3+24*X*Y^2*Z^4+10*X*Y*Z^5+32*X^3*Y^2*Z+38*X^2*Y^3*Z+718*X^2*Y^2*Z^2+200*X*Y^4*Z+30*X*Y^3*Z^2+8*X*Y^2*Z^3+30*X*Y*Z^4+40*X^3*Y*Z+162*X^2*Y^2*Z+126*X*Y^3*Z+190*X*Y^2*Z^2+10*X*Y*Z^3+190*X^2*Y*Z+434*X*Y^2*Z+150*X*Y*Z^2+230*X*Y*Z

Algorithm definition

The algorithm ⟨10×28×28:4576⟩ is the (Kronecker) tensor product of ⟨2×4×4:26⟩ with ⟨5×7×7:176⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table