Description of fast matrix multiplication algorithm: ⟨10×25×25:3720⟩

Algorithm type

10X6Y4Z2+320X4Y4Z4+10X4Y2Z6+10X2Y6Z4+4XY9Z2+10X4Y4Z2+10X4Y2Z4+4X3Y6Z+128X2Y6Z2+10X2Y4Z4+4X2Y6Z+14XY6Z2+110X4Y2Z2+10X3Y4Z+430X2Y4Z2+4X2Y3Z3+110X2Y2Z4+44XY6Z+10X2Y4Z+4X2Y3Z2+10X2Y2Z3+10XY4Z2+16X3Y2Z+44X2Y3Z+742X2Y2Z2+16X2YZ3+110XY4Z+60XY3Z2+126X2Y2Z+16X2YZ2+88XY3Z+126XY2Z2+176X2YZ+396XY2Z+176XYZ2+352XYZ10X6Y4Z2320X4Y4Z410X4Y2Z610X2Y6Z44XY9Z210X4Y4Z210X4Y2Z44X3Y6Z128X2Y6Z210X2Y4Z44X2Y6Z14XY6Z2110X4Y2Z210X3Y4Z430X2Y4Z24X2Y3Z3110X2Y2Z444XY6Z10X2Y4Z4X2Y3Z210X2Y2Z310XY4Z216X3Y2Z44X2Y3Z742X2Y2Z216X2YZ3110XY4Z60XY3Z2126X2Y2Z16X2YZ288XY3Z126XY2Z2176X2YZ396XY2Z176XYZ2352XYZ10*X^6*Y^4*Z^2+320*X^4*Y^4*Z^4+10*X^4*Y^2*Z^6+10*X^2*Y^6*Z^4+4*X*Y^9*Z^2+10*X^4*Y^4*Z^2+10*X^4*Y^2*Z^4+4*X^3*Y^6*Z+128*X^2*Y^6*Z^2+10*X^2*Y^4*Z^4+4*X^2*Y^6*Z+14*X*Y^6*Z^2+110*X^4*Y^2*Z^2+10*X^3*Y^4*Z+430*X^2*Y^4*Z^2+4*X^2*Y^3*Z^3+110*X^2*Y^2*Z^4+44*X*Y^6*Z+10*X^2*Y^4*Z+4*X^2*Y^3*Z^2+10*X^2*Y^2*Z^3+10*X*Y^4*Z^2+16*X^3*Y^2*Z+44*X^2*Y^3*Z+742*X^2*Y^2*Z^2+16*X^2*Y*Z^3+110*X*Y^4*Z+60*X*Y^3*Z^2+126*X^2*Y^2*Z+16*X^2*Y*Z^2+88*X*Y^3*Z+126*X*Y^2*Z^2+176*X^2*Y*Z+396*X*Y^2*Z+176*X*Y*Z^2+352*X*Y*Z

Algorithm definition

The algorithm ⟨10×25×25:3720⟩ is the (Kronecker) tensor product of ⟨2×5×5:40⟩ with ⟨5×5×5:93⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table