Description of fast matrix multiplication algorithm: ⟨10×21×28:3520⟩

Algorithm type

4X6Y4Z4+40X4Y6Z4+4X2Y2Z10+40X2Y9Z2+232X4Y4Z4+12X2Y2Z8+4X3Y6Z2+32XY9Z+16X6Y2Z2+4X4Y4Z2+264X2Y6Z2+28X2Y4Z4+4X2Y2Z6+4X2Y6Z+28XY6Z2+4XY3Z5+76X4Y2Z2+100X2Y4Z2+60X2Y2Z4+100XY6Z+12XY3Z4+16X3Y3Z+12X3Y2Z2+120X2Y3Z2+4XY3Z3+12XYZ5+76X2Y3Z+788X2Y2Z2+60XY3Z2+36XYZ4+48X3YZ+12X2Y2Z+188XY3Z+84XY2Z2+12XYZ3+228X2YZ+300XY2Z+180XYZ2+276XYZ4X6Y4Z440X4Y6Z44X2Y2Z1040X2Y9Z2232X4Y4Z412X2Y2Z84X3Y6Z232XY9Z16X6Y2Z24X4Y4Z2264X2Y6Z228X2Y4Z44X2Y2Z64X2Y6Z28XY6Z24XY3Z576X4Y2Z2100X2Y4Z260X2Y2Z4100XY6Z12XY3Z416X3Y3Z12X3Y2Z2120X2Y3Z24XY3Z312XYZ576X2Y3Z788X2Y2Z260XY3Z236XYZ448X3YZ12X2Y2Z188XY3Z84XY2Z212XYZ3228X2YZ300XY2Z180XYZ2276XYZ4*X^6*Y^4*Z^4+40*X^4*Y^6*Z^4+4*X^2*Y^2*Z^10+40*X^2*Y^9*Z^2+232*X^4*Y^4*Z^4+12*X^2*Y^2*Z^8+4*X^3*Y^6*Z^2+32*X*Y^9*Z+16*X^6*Y^2*Z^2+4*X^4*Y^4*Z^2+264*X^2*Y^6*Z^2+28*X^2*Y^4*Z^4+4*X^2*Y^2*Z^6+4*X^2*Y^6*Z+28*X*Y^6*Z^2+4*X*Y^3*Z^5+76*X^4*Y^2*Z^2+100*X^2*Y^4*Z^2+60*X^2*Y^2*Z^4+100*X*Y^6*Z+12*X*Y^3*Z^4+16*X^3*Y^3*Z+12*X^3*Y^2*Z^2+120*X^2*Y^3*Z^2+4*X*Y^3*Z^3+12*X*Y*Z^5+76*X^2*Y^3*Z+788*X^2*Y^2*Z^2+60*X*Y^3*Z^2+36*X*Y*Z^4+48*X^3*Y*Z+12*X^2*Y^2*Z+188*X*Y^3*Z+84*X*Y^2*Z^2+12*X*Y*Z^3+228*X^2*Y*Z+300*X*Y^2*Z+180*X*Y*Z^2+276*X*Y*Z

Algorithm definition

The algorithm ⟨10×21×28:3520⟩ is the (Kronecker) tensor product of ⟨2×3×4:20⟩ with ⟨5×7×7:176⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table