Description of fast matrix multiplication algorithm: ⟨10×21×21:2640⟩

Algorithm type

3X6Y4Z4+30X4Y6Z4+3X2Y2Z10+174X4Y4Z4+9X2Y2Z8+12X6Y2Z2+3X4Y4Z2+84X2Y6Z2+21X2Y4Z4+3X2Y2Z6+6X3Y4Z2+57X4Y2Z2+423X2Y4Z2+45X2Y2Z4+48XY6Z+6XY2Z5+6X3Y2Z2+6X2Y4Z+60X2Y3Z2+42XY4Z2+18XY2Z4+6XYZ5+24X3Y2Z+417X2Y2Z2+150XY4Z+6XY2Z3+18XYZ4+24X3YZ+120X2Y2Z+48XY3Z+132XY2Z2+6XYZ3+114X2YZ+288XY2Z+90XYZ2+138XYZ3X6Y4Z430X4Y6Z43X2Y2Z10174X4Y4Z49X2Y2Z812X6Y2Z23X4Y4Z284X2Y6Z221X2Y4Z43X2Y2Z66X3Y4Z257X4Y2Z2423X2Y4Z245X2Y2Z448XY6Z6XY2Z56X3Y2Z26X2Y4Z60X2Y3Z242XY4Z218XY2Z46XYZ524X3Y2Z417X2Y2Z2150XY4Z6XY2Z318XYZ424X3YZ120X2Y2Z48XY3Z132XY2Z26XYZ3114X2YZ288XY2Z90XYZ2138XYZ3*X^6*Y^4*Z^4+30*X^4*Y^6*Z^4+3*X^2*Y^2*Z^10+174*X^4*Y^4*Z^4+9*X^2*Y^2*Z^8+12*X^6*Y^2*Z^2+3*X^4*Y^4*Z^2+84*X^2*Y^6*Z^2+21*X^2*Y^4*Z^4+3*X^2*Y^2*Z^6+6*X^3*Y^4*Z^2+57*X^4*Y^2*Z^2+423*X^2*Y^4*Z^2+45*X^2*Y^2*Z^4+48*X*Y^6*Z+6*X*Y^2*Z^5+6*X^3*Y^2*Z^2+6*X^2*Y^4*Z+60*X^2*Y^3*Z^2+42*X*Y^4*Z^2+18*X*Y^2*Z^4+6*X*Y*Z^5+24*X^3*Y^2*Z+417*X^2*Y^2*Z^2+150*X*Y^4*Z+6*X*Y^2*Z^3+18*X*Y*Z^4+24*X^3*Y*Z+120*X^2*Y^2*Z+48*X*Y^3*Z+132*X*Y^2*Z^2+6*X*Y*Z^3+114*X^2*Y*Z+288*X*Y^2*Z+90*X*Y*Z^2+138*X*Y*Z

Algorithm definition

The algorithm ⟨10×21×21:2640⟩ is the (Kronecker) tensor product of ⟨2×3×3:15⟩ with ⟨5×7×7:176⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table