Description of fast matrix multiplication algorithm: ⟨10×20×30:3648⟩

Algorithm type

4XY20Z+4X2Y16Z2+X4Y8Z6+24XY16Z+23X4Y8Z4+5X4Y6Z6+20X2Y12Z2+X2Y10Z3+4X8Y4Z2+115X4Y6Z4+6X4Y4Z6+23X2Y10Z2+8X2Y8Z4+32XY12Z+20X8Y3Z2+6X2Y8Z3+8XY10Z2+24X8Y2Z2+138X4Y4Z4+166X2Y8Z2+40X2Y6Z4+13X2Y4Z6+4XY10Z+8X2Y6Z3+65X2Y3Z6+48XY8Z2+4X4Y5Z+204X2Y6Z2+52X2Y4Z4+78X2Y2Z6+56XY8Z+24X4Y4Z+8X2Y4Z3+20X2Y3Z4+64XY6Z2+13XY5Z3+32X4Y3Z+223X2Y4Z2+24X2Y2Z4+32XY6Z+4XY5Z2+78XY4Z3+32X4Y2Z+75X2Y3Z2+13X2Y2Z3+15XY5Z+88XY4Z2+104XY3Z3+52X4YZ+389X2Y2Z2+174XY4Z+32XY3Z2+104XY2Z3+120XY3Z+136XY2Z2+169XYZ3+172XY2Z+52XYZ2+195XYZ4XY20Z4X2Y16Z2X4Y8Z624XY16Z23X4Y8Z45X4Y6Z620X2Y12Z2X2Y10Z34X8Y4Z2115X4Y6Z46X4Y4Z623X2Y10Z28X2Y8Z432XY12Z20X8Y3Z26X2Y8Z38XY10Z224X8Y2Z2138X4Y4Z4166X2Y8Z240X2Y6Z413X2Y4Z64XY10Z8X2Y6Z365X2Y3Z648XY8Z24X4Y5Z204X2Y6Z252X2Y4Z478X2Y2Z656XY8Z24X4Y4Z8X2Y4Z320X2Y3Z464XY6Z213XY5Z332X4Y3Z223X2Y4Z224X2Y2Z432XY6Z4XY5Z278XY4Z332X4Y2Z75X2Y3Z213X2Y2Z315XY5Z88XY4Z2104XY3Z352X4YZ389X2Y2Z2174XY4Z32XY3Z2104XY2Z3120XY3Z136XY2Z2169XYZ3172XY2Z52XYZ2195XYZ4*X*Y^20*Z+4*X^2*Y^16*Z^2+X^4*Y^8*Z^6+24*X*Y^16*Z+23*X^4*Y^8*Z^4+5*X^4*Y^6*Z^6+20*X^2*Y^12*Z^2+X^2*Y^10*Z^3+4*X^8*Y^4*Z^2+115*X^4*Y^6*Z^4+6*X^4*Y^4*Z^6+23*X^2*Y^10*Z^2+8*X^2*Y^8*Z^4+32*X*Y^12*Z+20*X^8*Y^3*Z^2+6*X^2*Y^8*Z^3+8*X*Y^10*Z^2+24*X^8*Y^2*Z^2+138*X^4*Y^4*Z^4+166*X^2*Y^8*Z^2+40*X^2*Y^6*Z^4+13*X^2*Y^4*Z^6+4*X*Y^10*Z+8*X^2*Y^6*Z^3+65*X^2*Y^3*Z^6+48*X*Y^8*Z^2+4*X^4*Y^5*Z+204*X^2*Y^6*Z^2+52*X^2*Y^4*Z^4+78*X^2*Y^2*Z^6+56*X*Y^8*Z+24*X^4*Y^4*Z+8*X^2*Y^4*Z^3+20*X^2*Y^3*Z^4+64*X*Y^6*Z^2+13*X*Y^5*Z^3+32*X^4*Y^3*Z+223*X^2*Y^4*Z^2+24*X^2*Y^2*Z^4+32*X*Y^6*Z+4*X*Y^5*Z^2+78*X*Y^4*Z^3+32*X^4*Y^2*Z+75*X^2*Y^3*Z^2+13*X^2*Y^2*Z^3+15*X*Y^5*Z+88*X*Y^4*Z^2+104*X*Y^3*Z^3+52*X^4*Y*Z+389*X^2*Y^2*Z^2+174*X*Y^4*Z+32*X*Y^3*Z^2+104*X*Y^2*Z^3+120*X*Y^3*Z+136*X*Y^2*Z^2+169*X*Y*Z^3+172*X*Y^2*Z+52*X*Y*Z^2+195*X*Y*Z

Algorithm definition

The algorithm ⟨10×20×30:3648⟩ is the (Kronecker) tensor product of ⟨2×5×6:48⟩ with ⟨5×4×5:76⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table