Description of fast matrix multiplication algorithm: ⟨10×20×25:3040⟩

Algorithm type

10X4Y4Z6+16XY12Z+40X8Y2Z2+230X4Y4Z4+40X2Y8Z2+4X2Y6Z3+92X2Y6Z2+80X2Y4Z4+130X2Y2Z6+40XY8Z+10X2Y4Z3+32XY6Z2+16X4Y3Z+270X2Y4Z2+40X2Y2Z4+16XY6Z+40X4Y2Z+16X2Y2Z3+80XY4Z2+52XY3Z3+64X4YZ+518X2Y2Z2+104XY4Z+16XY3Z2+130XY2Z3+60XY3Z+168XY2Z2+208XYZ3+214XY2Z+64XYZ2+240XYZ10X4Y4Z616XY12Z40X8Y2Z2230X4Y4Z440X2Y8Z24X2Y6Z392X2Y6Z280X2Y4Z4130X2Y2Z640XY8Z10X2Y4Z332XY6Z216X4Y3Z270X2Y4Z240X2Y2Z416XY6Z40X4Y2Z16X2Y2Z380XY4Z252XY3Z364X4YZ518X2Y2Z2104XY4Z16XY3Z2130XY2Z360XY3Z168XY2Z2208XYZ3214XY2Z64XYZ2240XYZ10*X^4*Y^4*Z^6+16*X*Y^12*Z+40*X^8*Y^2*Z^2+230*X^4*Y^4*Z^4+40*X^2*Y^8*Z^2+4*X^2*Y^6*Z^3+92*X^2*Y^6*Z^2+80*X^2*Y^4*Z^4+130*X^2*Y^2*Z^6+40*X*Y^8*Z+10*X^2*Y^4*Z^3+32*X*Y^6*Z^2+16*X^4*Y^3*Z+270*X^2*Y^4*Z^2+40*X^2*Y^2*Z^4+16*X*Y^6*Z+40*X^4*Y^2*Z+16*X^2*Y^2*Z^3+80*X*Y^4*Z^2+52*X*Y^3*Z^3+64*X^4*Y*Z+518*X^2*Y^2*Z^2+104*X*Y^4*Z+16*X*Y^3*Z^2+130*X*Y^2*Z^3+60*X*Y^3*Z+168*X*Y^2*Z^2+208*X*Y*Z^3+214*X*Y^2*Z+64*X*Y*Z^2+240*X*Y*Z

Algorithm definition

The algorithm ⟨10×20×25:3040⟩ is the (Kronecker) tensor product of ⟨2×5×5:40⟩ with ⟨5×4×5:76⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table