Description of fast matrix multiplication algorithm: ⟨10×20×22:2702⟩

Algorithm type

7X8Y8Z8+2X6Y12Z6+X4Y14Z4+2X10Y4Z6+2X8Y8Z4+X8Y6Z6+4X6Y8Z6+5X4Y12Z4+2X4Y8Z8+4X10Y4Z4+2X6Y4Z8+X2Y14Z2+X2Y8Z8+2X8Y4Z4+6X6Y6Z4+9X4Y8Z4+2X4Y4Z8+2X2Y4Z10+2X10Y2Z2+2X6Y6Z2+2X6Y4Z4+2X4Y6Z4+4X6Y4Z2+2X6Y2Z4+127X4Y4Z4+2X4Y2Z6+12X3Y6Z3+14X2Y8Z2+5X2Y4Z6+6X2Y7Z2+18X6Y2Z2+12X5Y2Z3+20X4Y4Z2+6X4Y3Z3+X4Y2Z4+24X3Y4Z3+60X2Y6Z2+18X2Y4Z4+14X2Y2Z6+24X5Y2Z2+12X3Y2Z4+6XY7Z+6XY4Z4+22X4Y2Z2+36X3Y3Z2+106X2Y4Z2+14X2Y2Z4+12XY2Z5+12X5YZ+12X3Y3Z+12X3Y2Z2+12X2Y3Z2+24X3Y2Z+12X3YZ2+580X2Y2Z2+12X2YZ3+84XY4Z+30XY2Z3+108X3YZ+48X2Y2Z+6X2YZ2+180XY3Z+36XY2Z2+84XYZ3+60X2YZ+312XY2Z+12XYZ2+420XYZ7X8Y8Z82X6Y12Z6X4Y14Z42X10Y4Z62X8Y8Z4X8Y6Z64X6Y8Z65X4Y12Z42X4Y8Z84X10Y4Z42X6Y4Z8X2Y14Z2X2Y8Z82X8Y4Z46X6Y6Z49X4Y8Z42X4Y4Z82X2Y4Z102X10Y2Z22X6Y6Z22X6Y4Z42X4Y6Z44X6Y4Z22X6Y2Z4127X4Y4Z42X4Y2Z612X3Y6Z314X2Y8Z25X2Y4Z66X2Y7Z218X6Y2Z212X5Y2Z320X4Y4Z26X4Y3Z3X4Y2Z424X3Y4Z360X2Y6Z218X2Y4Z414X2Y2Z624X5Y2Z212X3Y2Z46XY7Z6XY4Z422X4Y2Z236X3Y3Z2106X2Y4Z214X2Y2Z412XY2Z512X5YZ12X3Y3Z12X3Y2Z212X2Y3Z224X3Y2Z12X3YZ2580X2Y2Z212X2YZ384XY4Z30XY2Z3108X3YZ48X2Y2Z6X2YZ2180XY3Z36XY2Z284XYZ360X2YZ312XY2Z12XYZ2420XYZ7*X^8*Y^8*Z^8+2*X^6*Y^12*Z^6+X^4*Y^14*Z^4+2*X^10*Y^4*Z^6+2*X^8*Y^8*Z^4+X^8*Y^6*Z^6+4*X^6*Y^8*Z^6+5*X^4*Y^12*Z^4+2*X^4*Y^8*Z^8+4*X^10*Y^4*Z^4+2*X^6*Y^4*Z^8+X^2*Y^14*Z^2+X^2*Y^8*Z^8+2*X^8*Y^4*Z^4+6*X^6*Y^6*Z^4+9*X^4*Y^8*Z^4+2*X^4*Y^4*Z^8+2*X^2*Y^4*Z^10+2*X^10*Y^2*Z^2+2*X^6*Y^6*Z^2+2*X^6*Y^4*Z^4+2*X^4*Y^6*Z^4+4*X^6*Y^4*Z^2+2*X^6*Y^2*Z^4+127*X^4*Y^4*Z^4+2*X^4*Y^2*Z^6+12*X^3*Y^6*Z^3+14*X^2*Y^8*Z^2+5*X^2*Y^4*Z^6+6*X^2*Y^7*Z^2+18*X^6*Y^2*Z^2+12*X^5*Y^2*Z^3+20*X^4*Y^4*Z^2+6*X^4*Y^3*Z^3+X^4*Y^2*Z^4+24*X^3*Y^4*Z^3+60*X^2*Y^6*Z^2+18*X^2*Y^4*Z^4+14*X^2*Y^2*Z^6+24*X^5*Y^2*Z^2+12*X^3*Y^2*Z^4+6*X*Y^7*Z+6*X*Y^4*Z^4+22*X^4*Y^2*Z^2+36*X^3*Y^3*Z^2+106*X^2*Y^4*Z^2+14*X^2*Y^2*Z^4+12*X*Y^2*Z^5+12*X^5*Y*Z+12*X^3*Y^3*Z+12*X^3*Y^2*Z^2+12*X^2*Y^3*Z^2+24*X^3*Y^2*Z+12*X^3*Y*Z^2+580*X^2*Y^2*Z^2+12*X^2*Y*Z^3+84*X*Y^4*Z+30*X*Y^2*Z^3+108*X^3*Y*Z+48*X^2*Y^2*Z+6*X^2*Y*Z^2+180*X*Y^3*Z+36*X*Y^2*Z^2+84*X*Y*Z^3+60*X^2*Y*Z+312*X*Y^2*Z+12*X*Y*Z^2+420*X*Y*Z

Algorithm definition

The algorithm ⟨10×20×22:2702⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨5×10×11:386⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table