Description of fast matrix multiplication algorithm: ⟨10×20×20:2418⟩

Algorithm type

6X6Y4Z2+192X4Y4Z4+6X4Y2Z6+6X2Y6Z4+2XY9Z2+6X4Y4Z2+6X4Y2Z4+2X3Y6Z+64X2Y6Z2+6X2Y4Z4+2X2Y6Z+10XY6Z2+66X4Y2Z2+8X3Y4Z+322X2Y4Z2+2X2Y3Z3+66X2Y2Z4+22XY6Z+8X2Y4Z+2X2Y3Z2+8X2Y2Z3+8XY4Z2+10X3Y2Z+22X2Y3Z+460X2Y2Z2+10X2YZ3+88XY4Z+32XY3Z2+98X2Y2Z+10X2YZ2+44XY3Z+98XY2Z2+110X2YZ+286XY2Z+110XYZ2+220XYZ6X6Y4Z2192X4Y4Z46X4Y2Z66X2Y6Z42XY9Z26X4Y4Z26X4Y2Z42X3Y6Z64X2Y6Z26X2Y4Z42X2Y6Z10XY6Z266X4Y2Z28X3Y4Z322X2Y4Z22X2Y3Z366X2Y2Z422XY6Z8X2Y4Z2X2Y3Z28X2Y2Z38XY4Z210X3Y2Z22X2Y3Z460X2Y2Z210X2YZ388XY4Z32XY3Z298X2Y2Z10X2YZ244XY3Z98XY2Z2110X2YZ286XY2Z110XYZ2220XYZ6*X^6*Y^4*Z^2+192*X^4*Y^4*Z^4+6*X^4*Y^2*Z^6+6*X^2*Y^6*Z^4+2*X*Y^9*Z^2+6*X^4*Y^4*Z^2+6*X^4*Y^2*Z^4+2*X^3*Y^6*Z+64*X^2*Y^6*Z^2+6*X^2*Y^4*Z^4+2*X^2*Y^6*Z+10*X*Y^6*Z^2+66*X^4*Y^2*Z^2+8*X^3*Y^4*Z+322*X^2*Y^4*Z^2+2*X^2*Y^3*Z^3+66*X^2*Y^2*Z^4+22*X*Y^6*Z+8*X^2*Y^4*Z+2*X^2*Y^3*Z^2+8*X^2*Y^2*Z^3+8*X*Y^4*Z^2+10*X^3*Y^2*Z+22*X^2*Y^3*Z+460*X^2*Y^2*Z^2+10*X^2*Y*Z^3+88*X*Y^4*Z+32*X*Y^3*Z^2+98*X^2*Y^2*Z+10*X^2*Y*Z^2+44*X*Y^3*Z+98*X*Y^2*Z^2+110*X^2*Y*Z+286*X*Y^2*Z+110*X*Y*Z^2+220*X*Y*Z

Algorithm definition

The algorithm ⟨10×20×20:2418⟩ is the (Kronecker) tensor product of ⟨2×4×4:26⟩ with ⟨5×5×5:93⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table