Description of fast matrix multiplication algorithm: ⟨10×16×28:2704⟩

Algorithm type

216X4Y4Z4+72X2Y6Z2+12X2Y4Z4+4XY6Z2+48X4Y2Z2+384X2Y4Z2+120X2Y2Z4+32XY6Z+16XY4Z2+16X2Y3Z+492X2Y2Z2+128XY4Z+40XY3Z2+64X2Y2Z+44XY3Z+180XY2Z2+80X2YZ+336XY2Z+200XYZ2+220XYZ216X4Y4Z472X2Y6Z212X2Y4Z44XY6Z248X4Y2Z2384X2Y4Z2120X2Y2Z432XY6Z16XY4Z216X2Y3Z492X2Y2Z2128XY4Z40XY3Z264X2Y2Z44XY3Z180XY2Z280X2YZ336XY2Z200XYZ2220XYZ216*X^4*Y^4*Z^4+72*X^2*Y^6*Z^2+12*X^2*Y^4*Z^4+4*X*Y^6*Z^2+48*X^4*Y^2*Z^2+384*X^2*Y^4*Z^2+120*X^2*Y^2*Z^4+32*X*Y^6*Z+16*X*Y^4*Z^2+16*X^2*Y^3*Z+492*X^2*Y^2*Z^2+128*X*Y^4*Z+40*X*Y^3*Z^2+64*X^2*Y^2*Z+44*X*Y^3*Z+180*X*Y^2*Z^2+80*X^2*Y*Z+336*X*Y^2*Z+200*X*Y*Z^2+220*X*Y*Z

Algorithm definition

The algorithm ⟨10×16×28:2704⟩ is the (Kronecker) tensor product of ⟨2×4×4:26⟩ with ⟨5×4×7:104⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table