Description of fast matrix multiplication algorithm: ⟨10×16×28:2814⟩

Algorithm type

X8Y12Z8+X8Y12Z6+5X8Y8Z8+X6Y8Z10+X4Y16Z4+2X8Y8Z6+8X6Y8Z6+4X4Y12Z4+9X4Y8Z4+X4Y8Z2+12X4Y6Z4+6X4Y4Z6+3X2Y8Z4+6X4Y6Z3+122X4Y4Z4+6X3Y4Z5+10X2Y8Z2+X2Y4Z6+12X4Y4Z3+4X4Y4Z2+48X3Y4Z3+54X2Y6Z2+124X2Y4Z2+12X2Y2Z4+6X2Y4Z+36X2Y3Z2+36X2Y2Z3+18XY4Z2+693X2Y2Z2+24XY4Z+6XY2Z3+24X2Y2Z+180XY3Z+420XY2Z+72XYZ2+846XYZX8Y12Z8X8Y12Z65X8Y8Z8X6Y8Z10X4Y16Z42X8Y8Z68X6Y8Z64X4Y12Z49X4Y8Z4X4Y8Z212X4Y6Z46X4Y4Z63X2Y8Z46X4Y6Z3122X4Y4Z46X3Y4Z510X2Y8Z2X2Y4Z612X4Y4Z34X4Y4Z248X3Y4Z354X2Y6Z2124X2Y4Z212X2Y2Z46X2Y4Z36X2Y3Z236X2Y2Z318XY4Z2693X2Y2Z224XY4Z6XY2Z324X2Y2Z180XY3Z420XY2Z72XYZ2846XYZX^8*Y^12*Z^8+X^8*Y^12*Z^6+5*X^8*Y^8*Z^8+X^6*Y^8*Z^10+X^4*Y^16*Z^4+2*X^8*Y^8*Z^6+8*X^6*Y^8*Z^6+4*X^4*Y^12*Z^4+9*X^4*Y^8*Z^4+X^4*Y^8*Z^2+12*X^4*Y^6*Z^4+6*X^4*Y^4*Z^6+3*X^2*Y^8*Z^4+6*X^4*Y^6*Z^3+122*X^4*Y^4*Z^4+6*X^3*Y^4*Z^5+10*X^2*Y^8*Z^2+X^2*Y^4*Z^6+12*X^4*Y^4*Z^3+4*X^4*Y^4*Z^2+48*X^3*Y^4*Z^3+54*X^2*Y^6*Z^2+124*X^2*Y^4*Z^2+12*X^2*Y^2*Z^4+6*X^2*Y^4*Z+36*X^2*Y^3*Z^2+36*X^2*Y^2*Z^3+18*X*Y^4*Z^2+693*X^2*Y^2*Z^2+24*X*Y^4*Z+6*X*Y^2*Z^3+24*X^2*Y^2*Z+180*X*Y^3*Z+420*X*Y^2*Z+72*X*Y*Z^2+846*X*Y*Z

Algorithm definition

The algorithm ⟨10×16×28:2814⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨5×8×14:402⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table