Description of fast matrix multiplication algorithm: ⟨10×16×25:2432⟩

Algorithm type

32X2Y16Z2+8X4Y8Z6+32XY16Z+184X4Y8Z4+32X8Y4Z2+64X2Y8Z4+8X2Y8Z3+216X2Y8Z2+104X2Y4Z6+64XY8Z2+32X2Y4Z4+32XY8Z+32X4Y4Z+120X2Y4Z2+104XY4Z3+16X2Y2Z3+32XY4Z2+64X4YZ+368X2Y2Z2+184XY4Z+128XY2Z2+208XYZ3+64XY2Z+64XYZ2+240XYZ32X2Y16Z28X4Y8Z632XY16Z184X4Y8Z432X8Y4Z264X2Y8Z48X2Y8Z3216X2Y8Z2104X2Y4Z664XY8Z232X2Y4Z432XY8Z32X4Y4Z120X2Y4Z2104XY4Z316X2Y2Z332XY4Z264X4YZ368X2Y2Z2184XY4Z128XY2Z2208XYZ364XY2Z64XYZ2240XYZ32*X^2*Y^16*Z^2+8*X^4*Y^8*Z^6+32*X*Y^16*Z+184*X^4*Y^8*Z^4+32*X^8*Y^4*Z^2+64*X^2*Y^8*Z^4+8*X^2*Y^8*Z^3+216*X^2*Y^8*Z^2+104*X^2*Y^4*Z^6+64*X*Y^8*Z^2+32*X^2*Y^4*Z^4+32*X*Y^8*Z+32*X^4*Y^4*Z+120*X^2*Y^4*Z^2+104*X*Y^4*Z^3+16*X^2*Y^2*Z^3+32*X*Y^4*Z^2+64*X^4*Y*Z+368*X^2*Y^2*Z^2+184*X*Y^4*Z+128*X*Y^2*Z^2+208*X*Y*Z^3+64*X*Y^2*Z+64*X*Y*Z^2+240*X*Y*Z

Algorithm definition

The algorithm ⟨10×16×25:2432⟩ is the (Kronecker) tensor product of ⟨2×4×5:32⟩ with ⟨5×4×5:76⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table